ON CERTAIN CLASSES OF CLOSE-TO-CONVEX FUNCTIONS

KHALIDA INAYAT NOOR

Mathematics Department, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia

(Received May 30, 1991 and in revised form September 27, 1991)

ABSTRACT. A function f, analytic in the unit disk E and given by $f(z) = z + \sum_{\substack{k=2\\ k=2}}^{\infty} a_n z^k$ is said to be in the family K_n if and only if $D^n f$ is close-to-convex, where $D^n f = \frac{z}{(1-z)^{n+1}} * f, n \in N_0 = \{0, 1, 2, ...\}$ and * denotes the Hadamard product or convolution. The classes K_n are investigated and some properties are given. It is shown that $K_{n+1} \subseteq K_n$ and K_n consists entirely of univalent functions. Some closure properties of integral operators defined on K_n are given.

KEY WORDS AND PHRASES. Univalent, close-to-convex, starlike, convolution, integral operators.

1991 AMS SUBJECT CLASSIFICATION CODES. 30C45, 30A32.

1. INTRODUCTION.

Let A denote the class of functions $f:f(z) = z + \sum_{\substack{k=2\\ k \equiv 2}}^{\infty} a_k z^k$ analytic in the unit disk $E = \{z: |z| < 1\}$. The Hadamard product or convolution of two functions $f, g \in A$ is denoted by f*g. For $n \in N_0 = \{0, 1, 2, 3, ...\}$, let $D^n f = (\frac{z}{(1-z)^{n+1}} * f$, so that

$$D^{n}f = z(z^{n-1}f)^{(n)}/n!.$$

Let $S \subset A$ be the class of univalent functions and for $0 \le \beta < 1$, let $C(\beta)$ and $S^*(\beta)$ denote the subclasses of S consisting of convex functions of order β and starlike functions of order β respectively. The classes C and S^* of convex and starlike functions, respectively, are identified by $C(0) \equiv C$ and $S^*(0) = S^*$.

A function $f \in S$ belongs to the class $K(\alpha, \beta)$ of close-to-convex of order α and type β if and only if for some $g \in S^*(\beta)$ and $0 \le \alpha < 1$,

$$Re \; \frac{zf'(z)}{g(z)} > \alpha, \; z \in E.$$

It is clear that $K(0,0) \equiv K$, the class of close-to-convex univalent functions [1].

DEFINITION 1.1. For $n \in N_0$, a function $f \in A$ is said to belong to the classes R_n , if and only if for $z \in E$,

$$Re \frac{z(D^n f(z))'}{D^n f(z)} > 0.$$
(1.1)

Thus $R_0 \equiv S^*$ and $R_1 \equiv C$. In [2], Ahuja discussed these classes and showed that $R_{n+1} \subset R_n$ for

each $n \in N_0$. This implies that functions in R_n are starlike and hence univalent.

We now extend the classes R_n , as follows:

DEFINITION 1.2. Let $f \in A$. Then $f \in K_n$ if and only if there exists $g \in R_n$ such that for $z \in E$,

$$Re \; \frac{z(D^n f(z))'}{D^n g(z)} > 0. \tag{1.2}$$

We note that $K_0 \equiv K$ and $K_1 \equiv C^*$, the class of quasi-convex functions introduced in [3].

In order to develop some results for K_n , we shall need the following:

LEMMA 1.1 [4]. Let w be analytic in E. If $|\omega|$ assumes its maximum value on the circle |z| = r at a point z_0 , then

$$z_0 \ \omega'(z_0) = k \ \omega(z_0),$$

where $k \geq 1$.

LEMMA 1.2 [5]. Let $u = u_1 + iu_2$ and $v = v_1 + iv_2$ and $\psi(u, v)$ be a complex-valued function satisfying the conditions:

- (i) $\psi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^2$,
- (ii) $(1,0) \in D$ and $\psi(1,0) > 0$,
- (iii) $Re(iu_2, v_1) \leq 0$ whenever $(iu_2, v_1) \in D$ and $v_1 \leq -\frac{1}{2}(1+u_2^2)$.

If $h(z) = 1 + \sum_{k=2}^{\infty} c_k z^k$ is a function analytic in *E*, such that $(h(z), zh'(z)) \in D$ and $Re \ \psi(h(z), zh'(z)) > 0$ for $z \in E$, then $Re \ h(z) > 0$ in *E*.

LEMMA 1.3. [6]. Let ϕ be convex and g be starlike in E. Then, for F analytic in E with F(0) = 1, $\frac{\phi^* Fg}{\phi^* g}$ is contained in the convex hull of F(E).

2. PROPERTIES OF THE FAMILY K_n .

We first prove that all functions in K_n are close-to-convex and hence univalent.

THEOREM 2.1. $K_{n+1} \subset K_n$, for each $n \in N_0$. PROOF. Let $f \in K_{n+1}$. Then for $z \in E$

$$Re \; \frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} > 0, \text{ for some } g \in R_{n+1}.$$

Define $\omega(z)$ in E such that

$$\frac{z(D^n f(z))'}{D^n g(z)} = \frac{1 - \omega(z)}{1 + \omega(z)},$$
(2.1)

where $\omega(0) = 0$ and $\omega(z) \neq .-1$. We show that $|\omega(z)| < 1$.

From (2.1) we have

$$z(D^{n}f(z))' = D^{n}g(z), \quad \frac{1-\omega(z)}{1+\omega(z)}.$$
(2.2)

So, from (2.2) and the identity

$$z(D^{n}f(z))' = (n+1)D^{n+1}f(z) - nD^{n}f(z), \qquad (2.3)$$

we obtain

$$z(D^{n+1}f(z))' = \frac{1}{n+1} \left[z(D^{n}g(z))' \frac{1-\omega(z)}{1+\omega(z)} + D^{n}g(z) \left\{ \frac{-2z\omega'(z)}{(1+\omega(z))^{2}} + n\frac{1-\omega(z)}{1+\omega(z)} \right\} \right]$$
(2.4)

Now apply (2.3) for the function g, and use (2.4) to obtain

$$\frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} = \frac{1-\omega(z)}{1+\omega(z)} + \frac{1}{n+1} \frac{D^n g(z)}{D^{n+1}g(z)} \cdot \left[\frac{-2z\omega'(z)}{(1+\omega(z))^2}\right].$$
(2.5)

Since $R_{n+1} \subset R_n$, this implies that $g \in R_n$ and hence there exists an analytic function $\omega_1(z)$ with $\omega_1(0) = 0$ and $|\omega_1(z)| < 1$ such that

$$\frac{D^{n+1}g(z)}{D^{n}g(z)} = \frac{1-\omega(z)}{1+\omega(z)}.$$
(2.6)

Thus using (2.6) in (2.5) we have

$$\frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} = \frac{1-\omega(z)}{1+\omega(z)} + \frac{1}{n+1} \left(\frac{1+\omega_1(z)}{1-\omega_1(z)}\right) \left(\frac{-2z\omega'(z)}{(1+\omega(z))^2}\right).$$
(2.7)

Suppose now that for $z \in E$

$$\max_{\substack{|z| \leq |z_0|}} |\omega(z)| = |\omega(z_0)| = 1, (\omega(z_0) \neq -1).$$

Then it follows, from Lemma 1.1, that

$$z_0\omega'(z_0)=k\omega(z_0),$$

where $k \ge 1$. Setting $\omega(z_0) = e^{i\Theta}$ and $\omega_1(z_0) = re^{i\phi}$ in (2.7) gives

$$Re\left\{\frac{z_0(D^{n+1}f(z_0))'}{D^{n+1}g(z_0)}\right\} = Re\left[\left(\frac{1}{n+1}\right)^{-\frac{2k(e^{i\Theta} + e^{-i\Theta} + 2)(1+r^2+2r\cos\phi)}{|1+re^{i\phi}|^2|(1+e^{i\Theta})^2|^2}\right]$$
$$= \frac{-4k}{n+1}\left[\frac{(\cos\Theta + 1)(1+r^2+2r\cos\phi)}{|1+re^{i\phi}|^2|(1+e^{i\Theta})^2|^2}\right]$$

Hence, if $\phi = \frac{\pi}{2}$,

$$Re \; \frac{z_0(D^{n+1}f(z_0))'}{D^{n+1}g(z_0)} < 0,$$

where $g \in R_{n+1}$ and $k \ge 1$. This contradicts our hypothesis that $f \in K_{n+1}$. Thus $|\omega(z)| < 1$ and so $f \in K_n$.

From Theorem 2.1, we note that $f \in K_n$ implies that $f \in K$ and so f is univalent in E. Also, since $K_n \subset K_1 \equiv C^*$ it follows that f is quasi-convex.

REMARK 2.1. Let $f \in K_n$ and be given by $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$. Then

$$D^{n}f(z) = \frac{z}{(1-z)^{n+1}} *f(z),$$

$$= \left[z + \sum_{k=2}^{\infty} \frac{(k+n-1)!}{n!(k-1)!} z^{k}\right] * \left[z + \sum_{k=2}^{\infty} a_{k} z^{k}\right],$$

$$= z + \sum_{k=2}^{\infty} \frac{(k+n-1)!}{n!(k-1)!} a_{k} z^{k}.$$
(2.8)

Thus from (2.8) and Definition 1.2 it follows that

 $f \in K_n$ if and only if $D^n f \in K$. (2.9)

THEOREM 2.2. Let $f \in K_n$ and be given by $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$. Then for $k \ge 2$ and $n \ge 0$, $|a_k| \le \frac{(k!)(n!)}{(k+n-1)!}$. This result is sharp with equality for the function f_0 , where

$$D^n f_0(z) = \frac{z}{(1-z)^2}.$$
 (2.10)

The proof follows immediately from (2.8), (2.9), and the well-known coefficient result for the class K of close-to-convex functions.

THEOREM 2.3. (Covering theorem). Let $f \in K_n$. If B is the boundary of the image of E under f, then every point of B is distance at least $\frac{n+1}{2(n+2)}$ from the origin.

PROOF. Let $f(z) \neq c, c \neq 0$. Then f_1 given by

$$f_1(z) = \frac{cf(z)}{c - f(z)}$$

is univalent in E. Write $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, then

$$\frac{cf(z)}{c-f(z)} = z + (a_2 + \frac{1}{c})z^2 + \cdots$$

and, since $f_1 \in S$, it follows that

$$|a_2 + \frac{1}{c}| \le 2.$$

Hence,

 $|\frac{1}{c}| \le 2 + |a_2|,$

and using Theorem 2.2, we obtain

$$|c| \geq \frac{n+1}{2(n+2)}$$

This completes the proof.

We note that when n = 0, $|c| \ge \frac{1}{4}$ and when n = 1, $|c| \ge \frac{1}{2}$ (see [3] and [7]).

THEOREM 2.4. $\overset{\infty}{\underline{n}}_{0}K_{n} = \{id\},\$

where id is the identity function z.

PROOF. Let f(z) = g(z) = z in (1.2), then it follows trivially that $z \in K_n$ for $n \ge 0$.

On the contrary, assume that $f \in \bigcap_{n=0}^{\infty} K_n$ with $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$.

Then it follows from Theorem 2.2. that f(z) = z.

3. INTEGRAL OPERATORS.

Let the operator $I_{\lambda}: A \rightarrow A$ be defined by $f = I_{\lambda}(F)$, as

$$f(z) = \frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_{0}^{z} \xi^{\frac{1}{\lambda}-2} F(\xi) d\xi, \qquad (3.1)$$

where $0 < \lambda \leq 1$.

For $\lambda = \frac{1}{2}$, Libera [8] established that the operator

$$I(F) = \frac{2}{\bar{z}} \int_{0}^{z} F(\xi) d\xi$$

preserves convexity, starlikeness, and close-to-convexity. Bernardi [9] greatly generalized Libera's results. Many authors have studied the operators of the form (3.1), see e.g. [7]. Ahuja [2] has discussed the $\lambda = \frac{1}{\gamma+1}$, γ complex and $Re \ \gamma \neq -1$ for the classes R_n . Here we shall consider (3.1) for K_n .

We shall need the following [2]:

Let $I_{\lambda}: A \to A$ be defined by (3.1) with $0 < \lambda \leq 1$. If $F \in R_n$, then $I_{\lambda}(F) \in R_n(\alpha)$, i.e., for $z \in E$

$$Rerac{z(D^n f(z))'}{D^n f(z)} > \alpha$$

where $0 < \alpha < 1$ and

$$\alpha = \frac{1}{4\lambda} \left[-(2-\lambda) + \sqrt{9\lambda^2 + 4\lambda + 1} \right]$$
(3.2)

We now prove:

THEOREM 3.1. Let $F \in K_n$ and let $f = I_{\lambda}(F)$ be defined as in (3.1) for $0 < \lambda \le 1$. Then $f \in K_n(\beta, \alpha)$, where α is given by (3.2) and $\beta(0 \le \beta < 1)$ is defined by (3.9).

PROOF. Let $G \in R_n$ and $I_{\lambda}(G) = g$, where I_{λ} is defined by (3.1). So that

and

$$D^{n}G(z) = (1 - \lambda)D^{n}g(z) + \lambda z(D^{n}g(z))'$$

$$D^{n}F(z) = (1 - \lambda)D^{n}f(z) + \lambda z(D^{n}f(z))',$$
(3.3)

Set

$$\frac{z(D^{n}f(z))'}{D^{n}g(z)} = (1-\beta)p(z) + \beta,$$
(3.4)

where

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n.$$

We need to show that $Re \ p(z) > 0$ for $z \in E$.

From (3.3), we have

$$\frac{z(D^{n}F(z))'}{D^{n}G(z)} = \frac{(1-\lambda)\frac{z(D^{n}f(z))'}{D^{n}g(z)} + \frac{\lambda z[z(D^{n}f(z))']}{D^{n}g(z)}}{(1-\lambda) + \lambda z \frac{(D^{n}g(z))'}{D^{n}g(z)}}$$
(3.5)

Since $g \in R_n(\alpha)$, where α is given by (3.2), we can write

$$\frac{z(D^n g(z))'}{D^n g(z)} = (1 - \alpha) p_0(z) + \alpha, \qquad (3.6)$$

where $Re p_0(z) > 0, z \in E$.

Also, from (3.4) and (3.6), we obtain

$$\frac{z[z(D^{n}f(z))]}{D^{n}g(z)} = \left\{ \frac{z(D^{n}g(z))}{D^{n}g(z)} ((1-\beta)p(z)) + \beta \frac{z(D^{n}g(z))}{D^{n}g(z)} + (1-\beta)zp'(z) \right\},$$
(3.7)

$$= [(1-\alpha)p_0(z) + \alpha][(1-\beta)p(z) + \beta] + (1-\beta)zp'(z)$$

Using (3.4), (3.6), and (3.7) in (3.5), it follows that

$$\frac{z(D^{n}F(z))'}{D^{n}G(z)} = \beta + (1-\beta)p(z) + \frac{\lambda(1-\beta)zp'(z)}{(1-\lambda) + \lambda[(1-\alpha)p_{0}(z) + \alpha]}.$$
(3.8)

Next define $\psi(u, v)$ by taking u = p(z) and v = zp'(z) in (3.8) by

$$\psi(u,v) = \beta + (1-\beta)u + \frac{\lambda(1-\beta)v}{\lambda(1-\alpha)p_0 - \lambda(1-\alpha) + 1}$$

It is clear that $\psi(u, v)$ satisfies conditions (i) and (ii) of Lemma 1.2. To verify condition (iii), we note that

$$Re \ \psi(iu_2, v_1) = \beta + \frac{\lambda(1-\beta)v_1\{\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1\}}{\{\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1\}^2 + \lambda^2(1-\alpha)^2p_2^2}$$

where $p_0(z) = p_1 + ip_2$, p_1 , p_2 being functions of x and y and $Re \ p_0 = p_1 > 0$. By putting $v_1 \le -\frac{1}{2}(1+u_2^2)$, we obtain

$$Re \ \psi(iu_2, v_1) \leq \beta - \frac{\lambda(1-\beta)(1+u_2^2)[\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1]}{2[\{\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1\}^2 + \lambda^2(1-\alpha)^2p_2^2]} = \frac{A + Bu_2^2}{2C},$$

where

$$C = \{\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1\}^2 + \lambda^2(1-\alpha)^2 p_2^2 > 0,$$

$$A = 2\beta\{\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1\}^2 + \lambda^2(1-\alpha)^2 p_2^2 - \lambda(1-\beta)[\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1],$$

and

$$B = -\lambda(1-\beta)[\lambda(1-\alpha)p_1 - \lambda(1-\alpha) + 1]$$

We note that $Re \ \psi(iu_2, v_1) \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain $\beta \leq \beta_A$ where

$$\beta_{A} = \frac{\lambda^{2}(1-\alpha)^{2}p_{2}^{2} + \lambda[\lambda(1-\alpha)p_{1} - \lambda(1-\alpha) + 1]}{2[\{\lambda(1-\alpha)p_{1} - \lambda(1-\alpha) + 1\}^{2} + \lambda^{2}(1-\alpha)^{2}p_{2}^{2}] + \{\lambda(1-\alpha)p_{1} - \lambda(1-\alpha) + 1\}} \ge 0.$$
(3.9)

Also, from $B \le 0$, we have $\beta_A < 1$ and the condition (iii) is satisfied to give $Re \ p(z) > 0$ for $z \in E$ which implies that $f \in K_n(\beta, \alpha)$.

If we put $n = (\frac{1}{\lambda} - 1)$ in (3.1) we have the following: THEOREM 3.2. Let $F \in K_n$ and let

$$f(z) = (n+1)z^{-n} \int_{0}^{z} \xi^{n-1} F(\xi) d\xi.$$
(3.10)

Then $f \in K_{n+1}$.

PROOF. Let
$$g(z) = (n+1)z^{-n} \int_{0}^{z} \xi^{n-1} G(\xi) d\xi$$
, (3.11)

where $G \in R_n$. Then from [2] $g \in R_{n+1}$. From (3.10) and (3.11) we have

$$D^{n}F(z) = \frac{n}{n+1}D^{n}f(z) + \frac{1}{n+1}z(D^{n}f(z))'$$
(3.12)

and

$$D^{n}G(z) = \frac{n}{n+1}D^{n}g(z) + \frac{1}{n+1}z(D^{n}g(z))'.$$
(3.13)

From (3.12) and the identity

$$z(D^n f(z))' = (n+1)D^{n+1}f(z) - nD^n f(z),$$

(3.14)

we have

$$D^n F(z) = D^{n+1} f(z).$$

Since $F \in K_n$, it follows that, for $z \in E$,

$$Re\left(\frac{z(D^nF(z))'}{D^nG(z)}\right) > 0, \quad G \in R_n$$

and thus, using (3.14), we conclude that, for $z \in E$

$$Re\left[\frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)}\right] > 0 \text{ for } g \in R_{n+1}.$$

THEOREM 3.3. Let $f \in K_n$, $n \ge 0$ and $\phi \in C$. Then $\phi^* f \in K_n$.

PROOF. First we prove that, if $g \in R_n$, then $(\phi^*g) \in R_n$. It is sufficient to show that $D^n(\phi^*g) \in S^*$.

Now

$$D^{n}(\phi^{*}g)(z) = \frac{z}{(1-z)^{n+1}} * (g^{*}\phi)(z) = \phi(z) * \frac{z}{(1-z)^{n+1}} * g(z) = (\phi^{*}D^{n}g)(z).$$

Since $g \in R_n$ and $\phi \in C$, it follows that $\phi * g \in R_n$, see [2].

Next, we prove that $(\phi^* f) \in K_n$.

$$\frac{z[D^n(\phi^*f)(z)]'}{D^n(\phi^*g)(z)} = \frac{z[\phi(z)^*D^nf(z)]'}{\phi(z)^*D^ng(z)} = \frac{\phi(z)^*z\frac{(D^nf(z))'}{D^ng(z)} \cdot D^ng(z)}{\phi(z)^*D^ng(z)}$$

Applying Lemma 1.3 with $F(z) = \frac{z(D^n f(z))'}{D^n g(z)}$, $D^n g(z) \in S^*$ and Re R(z) > 0, we obtain

$$Re\frac{z[D^n(\phi^*f)(z)]}{D^n(\phi^*f)(z)} > 0 \text{ for } z \in E.$$

This proves Theorem 3.3.

REMARK 3.1. Theorem 3.3 is an analogue of the Polya-Schoenberg conjecture [6] for the family K_n . Many results on K_n can be deduced as applications.

We give the following:

THEOREM 3.4. Let $f \in K_n$, $n \ge 0$ and be defined by (3.1). Then $F \in K_n$, $n \ge 0$ for $|z| < r_0$, where r_0 is given by

$$r_0 = \frac{1}{(2\lambda + \sqrt{4\lambda^2 - 2\lambda + 1})}.$$
(3.15)

The function f_0 , defined by (2.10), shows that this result is sharp.

PROOF. Let $\phi_{\lambda}(z) = \sum_{\substack{k=1 \ k \neq 1}}^{\infty} [\lambda(k-1)+1]z^k, 0 < \lambda < 1.$ Then $\lambda_{\phi} \in C$ for $|z| < r_0$ where r_0 is given by (3.15). Also $F(z) = (\phi_{\lambda}^* f(z))$ and so using Theorem 3.3, we see that $F \in K_n, n \ge 0$ for $|z| < r_0$.

REMARK 3.2. We note that Theorem 3.3 shows that the family K_n is invariant under the following integral operators

$$\begin{split} I_1(f) &= \int_0^z \frac{f(\xi)}{\xi} d\xi = (f^*\phi_1)(z), \\ I_2(f) &= \frac{2}{z} \int_0^z \frac{f(\xi)}{\xi} d\xi = (f^*\phi_2)(z), \qquad \text{(Libera's operator)} \\ I_3(f) &= \int_0^z \frac{f(\xi) - f(x\xi)}{\xi - x\xi} d\xi, \, |x| < 1, x \neq 1, \\ &= (f^*\phi_3)(z) \end{split}$$

and

$$I_{4}(f) = \frac{1+c}{c} \int_{0}^{z} \xi^{c-1} f(\xi) d\xi, \qquad Re(c) > 0$$
$$= (f^{*}\phi_{4})(z),$$

where $\phi_i \in C, i = 1, 2, 3, 4$ and

$$\begin{split} \phi_1(z) &= \sum_{n=1}^{\infty} \frac{1}{n} z^n = -\log(1-z), \\ \phi_2(z) &= \sum_{n=1}^{\infty} \frac{2}{n+1} z^n = \frac{-2[z+\log(1-z)]}{z}, \\ \phi_3(z) &= \sum_{n=1}^{\infty} \frac{1-z^n}{n(1-z)} z^n = \frac{1}{1-z} \log \frac{1-zz}{1-z}, |z| = 1, z \neq 1, \end{split}$$

and

$$\phi_4(z) = \sum_{n=1}^{\infty} \frac{1+c}{n+c} z^n, \qquad Re(c) > 0.$$

ACKNOWLEDGEMENT. The author would like to thank the referee whose comments influenced the final version of the paper.

REFERENCES

- 1. KAPLAN, W., Close-to-convex schlicht functions, Mich. Math. J. 1 (1952), 169-185.
- AHUJA, O., Integral operators of certain univalent functions, <u>Int. J. Math. and Math. Sci. 8</u> (1985), 653-662.
- NOOR, K.I. & THOMAS, D.K., On quasi-convex univalent functions, <u>Int. J. Math. and Math</u> <u>Sci. 3</u> (1980), 225-266.
- 4. JACK, I., Functions starlike and convex of order α, J. Lond. Math. Soc. 3 (1971), 469-474.
- MILLER, S., Differential inequalities and Caratheordory functions, <u>Bull. Amer. Math. Soc. 81</u> (1975), 79-81.
- RUSCHEWEYH, ST. & SHIEL-SMALL, T., Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, <u>Comment. Math. Helv. 48</u> (1973), 119-135.
- 7. GOODMAN, A.W., Univalent Functions, Mariner Publishing Company Inc., 1983.
- 8. LIBERA, R., Some radius of convexity problems, Duke Math. J. (1964), 143-158.
- BERNARDI, S., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.

336