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ABSTRACT. A function/’, analytic in the unit disk E and given by ,f(z) z + anzk is said to be
k=2

in the family Kn if and only if Dnl is close-to-convex, where Dnf (1_,.+---------- ,f,n No= {0,1,2
and denotes the Hadamard product or convolution. The classes Kn are investigated and some

properties are given. It is shown that Kn + c_ Kn and Kn consists entirely of univalent functions.

Some closure properties of integral operators defined on Kn are given.
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1. INTRODUCTION.
Let A denote the class of functions j’: y(z) z + akzk analytic in the unit disk E {z: zl < 1}.

k=2
The Hadarnard product or convolution of two functions J’, g A is denoted by y.g. For

((1n NO {0,1,2,3 }, let Dnf _z),+ * Y, so that

Dnl z(zn- lJ’)(n)/n!.
Let S c A be the class of univalent functions and for 0 _</ < 1, let C(/) and $*(8) denote the

subclasses of $ consisting of convex functions of order B and starlike functions of order

respectively. The classes C and S* of convex and starlike functions, respectively, are identified by

C(0) _= C and S*(0) S*.
A function f S belongs to the class K(a,/) of close-to-convex of order a and type/ if and only

if for some e S*(/) and 0 < a < 1,

f()
Re-> a, z E.

It is clear that K(0,0) K, the class of close-to-convex univalent functions [1].
DEFINITION 1.1. For n NO, a function ] A is said to belong to the classes Rn, if and only

if for z E,

z(Dnf(z))",
D/,(,) > 0. (1.1)

Thus R0 S* and R C. In [2], Ahuja discussed these classes and showed that Rn + C Rn for
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each n q N0. This implies that functions in Rn are starlike and hence univalent.

We now extend the classes Rn, as follows:

DEFINITION 1.2. Let )’ A. Then J’ Kn if and only if there exists g Rn such that for E,

z(DnY(z))’>O. (1.2)Re Dng(z

We note that K0 K and K C*, the class of quasi-convex functions introduced in [3].
In order to develop some results for Kn, we shall need the following:
LEMMA 1.1 [4]. Let w be analytic in E. If I1 assumes its maximum value on the circle

zl at a point z0, then

z0 J(z0) (z0),

where k > 1.

LEMMA 1.2 [5]. Let u u + iu2 and v v + iv2 and ,,(u, v) be a complex-valued function

satisfying the conditions:

(i) (u,v) is continuous in a domain D C C2,
(ii) (1,0) D and (1,0) > 0,

(iii) Re(iu2,Vl) < 0 whenever (iu2,vl) D and v < -(1 + u).
If h(z)= + %z/ is a function analytic in E, such that (h(z), zh’(z)) D and Re (h(z), zh’(z))> 0

1:---2
for z q E, then Re h(z) > 0 in E.

LEMMA 1.3. [6]. Let be convex and g be starlike in E. Then, for F analytic in E with

is contained in the convex hull ofF(0) 1, F(E).
2. PROPERTIES OF THE FAMILY Kn.

We first prove that all functions in Kn are close-to-convex and hence univalent.

THEOREM 2.1. Kn + C Kn, for each n fi N0.
PROOF. Let )’ Kn + 1" Then for z E

z(Dn+ l’(z))"
> 0, for some Rn + 1"Re

Dn + g(z

Define (z) in E such that

z(Dnl(z))" w(z) (2.1)O%(z)) + (z)’

where ca(0) 0 and ca(z) #.- 1. We show that ca(z) < 1.

From (2.1) we have
-ca(z)z(Dnf(z))’= Dng(z)" + w(z)"

So, from (2.2) and the identity

z(Dnf(z))’= (n + 1)Dn + If(z)-nDn.f(z),
we obtain

z(Dn+lf(z)),=n_[z(Dn,(z)),l-ta(Z)l+__... + Dng(z
/(1
f-2zca’(z)+ca(z))2+nca(z)}t

Now apply (2.3) for the function 9, and use (2.4) to obtain

z(Dn + lf(z))" -ca(z) Dng(z) [ 2zca’(z) ]
Dn+ i’g(z 1-.I-ca(z)+n+ Dn+ lg(z)" (1 +ca(Z)):J"

(2.3)

(2.4)
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Since Rn+ C Rn, this implies that g 6. Rn and hence there exists an analytic function Wl(Z) with

1(0) 0 and Il(Z) < such that

Dn + lg(z) -,(z) (2.6)o%(z) + (z)"

Thus using (2.6)in (2.5) we have

Dn+ Ig(z) +w(z) +n--
Suppose now that for z e E

max
II I*01

Then it follows, from Lemma I.I, that

o’(zo) t(z0),
where t > 1.

Setting (z0)= esO and tal(Z0)= rei* in (2.7) gives

(2.7)

Hence, if, ,
zo(Dn + If(z0))"

< 0,Re
Dn + g(Zo

where E Rn + and/ _> 1. This contradicts our hypothesis that ! E Kr, + 1" Thus I(z) < and so

fEKn.

From Theorem 2.1, we note that I E Kn implies that l E K and so f is univalent in E. Also,
since Kn C K --C* it follows that I is quasi-convex.

REMARK 2.1. Let I E Kn and be given by l(z) z + atzt. Then

Dn/(z)
(1 z)n +

,f(z),

(2.8)

(t+n- 1)! kz + t=2 n!(t- 1)! akz

Thus from (2.8) and Definition 1.2 it follows that

16. Kn if and only if Dnl F. K.

kTHEOREM 2.2. Let l E Kn and be given by f(z) z + t,zakz= Then for t > 2 and n >_ 0,

latl < (rYe-i)!"

(2.9)
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This result is sharp with equality for the function f0, where

z (2.10)Dnfo(z)
(1 z)2"

The proof follows immediately from (2.8), (2.9), and the well-known coefficient result for the class

K of close-to-convex functions.

THEOREM 2.3. (Covering theorem). Let f Kn. If B is the boundary of the image of g

n+lunder f, then every point of B is distance at least 2(n + 2) from the origin.
PROOF. Let l(z) # e,e # 0. Then fl given by

of(z)
fl(Z)=c_f(z)

is univalent in E. Write f(z)= z + atzt, then

I) +)+c_I(z)-+(

and, since I $, it follows that

Hence,

and using Theorem 2.2, we obtain

This completes the proof.

a2 + c1-1 <2.

Ic!l_<2+ la21,

n+lIcl >- 2(. / 2)"

We note that when n O, c >_ 41- and when n 1, c > 1/2 (see [31 and [7]).
THEOREM 2.4.. ogn {id},

where id is the identity function z.

PROOF. Let f(z) g(z) z in (1.2), then it follows trivially that z a._ gn for n _> 0.

On the contrary, assume that f =oKn with f(z) z + IE=
Then it follows from Theorem 2.2. that f(z)= .
3. INTEGRAL OPERATORS.

Let the operator IA:AA be defined by f IA(F), as

where 0 < A < 1.

For A 2
!, Libera [8] established that the operator

I(F) 2 zf F()d
0

(3.1)

preserves convexity, starlikeness, and close-to-convexity. Bernardi [9] greatly generalized Libera’s

results. Many authors have studied the operators of the form (3.1), see e.g. [71. Ahuja [2] has
discussed the a ---f, complex and Re "r # -1 for the classes Rn. Here we shall consider (3.1) for

Kn.
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We shall need the following [2]"
Let IA:A-A be defined by (3.1) with 0 < A < 1. If F e Rn, then I(F)

_
Rn(a), i.e., for z E E

ReZ(onf(z))"
Dnl(z) > a,

where 0 < a < and

We now prove:

THEOREM 3.1. Let F e Kn and let f= IA(F be defined as in (3.1) for O< 51.

f Kn(a,c,), where a is given by (3.2) and a(0 _< < 1) is defined by (3.9).
PROOF. Let C, . Rn and l,(a) g, where IA is defined by (3.1). So that

and
DnG(z) (1 )Dng(z) + z(Dng(z))"

OnF(z) (1 x)onf(z) 4- Az(Onf(z))",

Set

where

z(O"f(z))"
ong(z) (1 a)p(z) + fl,

p(z) +

_
Cnzn.

n=l

We need to show that Re p(z) > 0 for z e E.

From (3.3), we have

z(DnF(z))"_ (1- Az(onf(z))’’
ong(z) + z[z(onf(z))’]’Dng(z)

DnG(z)
(1 A) + on(z)

Since 9 Rn(a), where a is given by (3.2), we can write

("())"
O%(z) ( )0() + ’

where tie Po( Z) > O, z E.

ao, fom (3A) =a (3.), obt

ztz(Dn/(z))’l" {z(on,(z))’rr. az(Dn,(z))"
Dng(z Dng(z

,,, a)p(z)) +. Dng(z + (1 a)zp’(z)

[(1 -oOVo(Z) + c,][(1 B)p(z) + /] + (1 B)zp’(z).

Using (3.4), (3.6), and (3.7) in (3.5), it follows that

z(DnF(z))" A(1 fl)zp’(z)
DnG(z) a + (1 f)lo(z)+ (1 A) + A[(1 -ot)Vo(Z + o]"

Next define ,b(u,v) by taking u p(z) and v zp’(z) in (3.8) by

(u,v) =/ 4-(1 A(1 )v
A(1 c)pO- A(1 c) 4- 1"

(3.2)

Then

(3.3)

(3.4)

(3.6)

(3.7)

(3.8)
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It is clear that (u,v) satisfies conditions (i) and (ii) of Lemma 1.2. To verify condition (iii), we
note that

Re b(iu2, v [3 +
A(1 )Vl{A(l -ct)p A(1 -ct)+ I}

where pO(Z) Pl + ip2’ Pl, P2 being functions of x and y and Re PO Pl > O.

By putting v _< -(1 + u]), we obtain

Re b(iu2,vl) <_
A(I /)(1+ u])[A(1- a)P1- A(I a) + 1] A+Bu

2[{A(l_a)Pl_A(l_ct)+1}2+A2(1 c,)2pl] 2C

where

C {A(1 -a)p A(I -a) + 1}2 + A2(1 a)2p] > 0,

A 2/3{A(I -a)p A(I -tr) + I}2 + A2(I tr)2p A(I 3)[A(I -tr)p A(I -tr) + I],

and

B A(1-/3)[A(l-a)pl- A(l-tr) + 11.

We note that Re b(iu2,vl) <_ 0 if and only if A _< 0 and B _< 0. From A _< 0, we obtain 3 _</3A where

A2(I- a)2p + A[A(I-ct)p A(I -a)+ I]
/3A

2[{A(1 ct)P1 A(I tr) + i}2 + A2(I tr)2p]] + {A(I tr)pl A(I or) +
>_0. (3.9)

Also, from B _< 0, we have a < and the condition (iii) is satisfied to give Re p(z) > 0 for z e E which

implies that I
If we put n (-,)in (3.1)we have the following:
THEOREM 3.2. Let F Kn and let

f(z) (n + 1)z n.n- 1F()j" (3.10)
0

Then ! Kn + 1"
PROOF. Let g(z)= (n+ 1)z-nfn- 1G()d, (3.11)

o
where G6_ Rn. Then from [2] g6. Rn+ 1" From (3.10) and (3.11) we have

and

From (3.12) and the identity

DnF(z) n--Dn.f(z) + n---z(Dn.f(z))"

DnG(z) ----fDn ng(z) + n--z(Dng(z))’.

(3.12)

(3.13)

z(Snf(z))’= (n + 1)Sn + If(z)- nonf(z),

we have

DriP(z) Dn + lf(z).
Since F Kn, it follows that, for z 6 E,

(3.14)
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and thus, using (3.14), we conclude that, for z 6- E

Re [z(D" + If(z))’]
[ Dn + lg(z j>0 for g6- Rn+ 1"

THEOREM 3.3. Let f 6- Kn, n > 0 and 6- C. Then *f 6- K,.
PROOF. First we prove that, if g6. Rn, then (*g)6- Rn. It is sufficient to show that

Dn(*g) 6. S*.
Now

Dn(,)(z) z_
(1 z)n +

(g*)(z) ,(z)
(1 z)n + * g(z) (*Dng)(z).

Since g 6- Rn and 6- C, it follows that g 6- R., see [2].
Next, we prove that (*l)6- Kn-

,,z(Dnf(z))". Dng(z)z[Dn(*f)(z)]" z[r(z)*Dnf(z)]’= tz Dng(z)
Dn($*g)(z) $(z)*Dng(z) $(z)*Dng(z)

Applying Lemma 1.3 with F(z) z(Dnf(z))" Dng(z) S* d Re R(z) > 0, we obtMnDn(z)

Rez[Dn(*’f)(z)[ > 0 for z 6- E.Dn(*f)(z)

This proves Theorem 3.3.

REMARK 3.1. Theorem 3.3 is an analogue of the Polya-Schoenberg conjecture [6] for the

family Kn. Many results on Kn can be deduced as applications.

We give the following:
THEOREM 3.4. Let f 6- Kn, n > 0 and be defined by (3.1). Then F 6- K,, n > 0 for zl < r0,

where r0 is given by

r0 (3.15)
(2 +).

The function Y0, defined by (2.10), shows that this result is sharp.
PROOF. Let ,(z)= [A(k- 1)+ 1)zk,0 < < 1.

k--I
Then , 6- C for [z[ < r0 where r0 is given by (3.15). Also F(z)= (*f(z)) and so using Theorem

3.3, we see that F 6- Kn, n >_ 0 for zl < r0.
REMARK 3.2. We note that Theorem 3.3 shows that the family Kn is invariant under the

following integral operators
z

12(’) 2/_f (f,2)(z) (Libera’s operator)
0

z

13(f) / f(/)- f(z)d
0

(f*b3)(z)
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and

Z

o

(f**4)(:)
where i E C, 1,2, 3, 4
and

R4c) > 0

I(:)= E zn’-
n----I

oo 2[z + log(l z)]() :

and

1-znzn=l_lz 1-zz ]zl =l,x=l3(z) n(1 z) log z
=I

d4(z)= E +c zn, Re(c) >O.
n=l
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