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ABSTRACT. Let M be a compact 3-dimensional totally umbilical CR-submanifold of a Kaehler

manifold of positive holomorphic sectional curvature. We prove that if the length of the mean

curvature vector of M does not vanish, then M is either diffeomorphic to S3 or RP3 or a lens space

L3p, q.
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1. INTRODUCTION.
Totally umbilical CR-submanifolds of a Kaehler manifold have been considered by Bejancu [2],

Blair, and Chen [3]. Recently Deshmukh and Husain [5] have also studied these submanifolds. In

fact, they have proved a classification theorem when the dimension of the submanifold M is _> 5. In
this paper we consider 3-dimensional totally umbilical CR-submanifolds of a Kaehler manifold. For

this case we have obtained the following theorem:

THEOREM 1.1. Let M be a compact 3-dimensional totally umbilical CR-submanifold of a

Kaehler manifold , of positive holomorphic sectional curvature. If the length of the mean

curvature vector of M does not vanish then M is diffeomorphic either to S3,Rp3 or the lens space

L3p, q.

2. PRELIMINARIES.
Let be an m-dimensional Kaehler manifold with almost complex structure J. A(2p+q)-

dimensional submanifold M of is called a C/i-submanifold if there exists a pair of orthogonal

complementary distributions D and such that JD D and d c v, where v is the normal bundle
+/- +/-

of M and dim D q[1]. Thus the normal bundle v splits as JD , where is invariant sub-
+/-

bundle of v under J. A CR-submanifold is said to be proper if neither D {0} nor D {0}.
+/-

We denote by , V, V the Re+/-mann+/-an connection on ,M and the normal bundle

respectively. They are related by

v xv v xr + h(X,r)
+/-

XN= ANX + T xN, NEv

(2.1)

(2.2)
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where h(x,Y) and ANX are the second fundamental forms which are related by

g(h(X,Y),N) g(ANX, r

Now a CR-submanifold is said to be totally umbilical if

(2.3)

h(X,Y) g(X, Y)H

where//= I (trace h) is the main curvature vector. If M is totally umbilical CR-submanifold, then

equations (2.1) and (2.2) become

XY= V XY + 9(X,Y)H

V XN= g(H,N)X + V XN

For X,Y,Z,W 6- X(M], the equation of Gauss is given by

(2.4)

(2.5)

R(X, Y;Z, W) R(X, Y;Z, W) + g(h(X, W),h(Y,Z)) g(h(X,Z),h(Y, W)) (2.6)

3. 3-DIMENSIONAL CR-SUBMANIFOLD OF A KAEHLER MANIFOLD.

(A) Let M be a compact totally umbilical 3-dimensional CR-submanifold of a Kaehlcr

manifold/. If dim D 0, then M will be totally real. Therefore, we assume that dim D O. Since

M’is 3-dimensional it follows that dim D= 2. We can then choose a frame field {X, JX, Z} on M,

where X 6- D and Z 6- ). We first have the following:

LEMMA 1. Let {X,‘iX, Z} be a frame field on M, X 6- D, Z 6- D. Then V zZ O. and H 6- JD.

PROOF. Using (2.4) and (2.5) in the equation z‘iz ‘i Zz, we obtain

-g(H, JZ)JZ + SV Z‘iZ V zZ-h(Z,Z) (3.1)

Taking inner produce in (3.1) with w 6- D we have

(3.2)g( V ZZ, W)= 0 W 6- D

From (3.2) we have V zz 6_ . Since g(z,z)= 1, we also have v zz 6- D. Therefore V zz O.

Now for x,Y # 0 in D we use (2.4) and the equation ‘i xY xJY to get

(3.3)JV XY +g(X,Y)JH V xJY +9(X, JY)H

Taking inner produce in (3.1) with N 6-/ we have

g(X,Y)g(JH, N) g(X, JY)g(H,N)

In particular if we let Y ,IX in (3.4) we get

Consider the frame field {X,‘ix, z} on M.

h(Y, W) g(Y, W)H for Y, W 6- X(M) implies that

(3.4)

Therefore H 6- ‘i). (3.5)

Since M is totally umbilical the equation

h(X, JX) h(X,Z) h(JX, Z) 0

h(X,X) h(JX, JX) h(Z,Z) H aSZ

for some smooth function a on M, since H 6- JD 2..

(3.6)
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Using (2.3) with N JZ we get

AX ,X, AJX aJX, AZ aZ (3.7)

So the frame field {x, Jx, z} diagonalizes A. Now using the equation ( XJ)(X)=O and

( jXJ)(X)--0 with the help of (3.6) we get

g< v xX, Z) o, < x,z) o

Also using the equation V Zz 0 from Lemma 1 we have

g( v zX, Z) o, ( v zjX, Z) o

Then using the equation ( XJ)(Z)= 0 and (3.7) we obtain

(3.9)

( v xZ, X) o, ( v xZ, SX) ,,

and using the equation ( jXJ)(Z)= 0 we have

9( v SxZ, X) -o,, g( V SxZ, SX) 0 (3.11)

Using equations (3.8), (3.9), (3.10), and (3.11) one can write the following equations for the frame

field {X, JX, Z}:

T XZ =aJX, V jXZ= -aX, V ZZ =O

7 Xx aJX, V jXX bJX + oZ, 7 ZX cJX

7 xJX aX oZ, 7 jxJX bX, zJX cX

for some smooth functions a,b and c.

(3.12)

Now we are ready to prove the following:
LEMMA 2. For the frame field {x, Jx, z} we have

(i) R(X,Z;Z,X) 11H 1[2
(ii) R(X, JX;JX, X)= (X,JX:JX, X)+ IIHII 2

(iii) R(Z, JX, JX, Z) H 2

PROOF. Using equations (3.12) in the equation

R(X,Z:Z,X) 9( x zz- z xz, _z,x), we obtain (i) and (iii). (ii) follows from the
ix, z]

Gauss equation (2.6) and the equation h(X,Y) 9(X,Y)H.
PROOF OF THE THEOREM. Since l(x, Jx:Jx, x)> 0 and H 0 it follows from (i), (ii),

and (iii) of Lemma 2 that all plane sections of M have strictly positive sectional curvature.

Therefore, the Ricci-curvature of M is strictly positive. Hence by Hamilton’s theorem (cf. [4]) it

follows that M is diffeomorphic to either S3,Rp3 or the lens space L3p, q.
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