ON TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD

M.A. BASHIR

Mathematics Department College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia

(Received June 4, 1991 and in revised form April 21, 1992)

ABSTRACT. Let M be a compact 3-dimensional totally umbilical CR-submanifold of a Kaehler manifold of positive holomorphic sectional curvature. We prove that if the length of the mean curvature vector of M does not vanish, then M is either diffeomorphic to S^3 or RP^3 or a lens space $L^3_{p,q}$.

KEY WORDS AND PHRASES. CR-submanifolds. Totally umbilical submanifolds. Kaehler manifold.

1991 AMS SUBJECT CLASSIFICATION CODES. Primary 53C40. Secondary 53C55.

1. INTRODUCTION.

Totally umbilical CR-submanifolds of a Kaehler manifold have been considered by Bejancu [2], Blair, and Chen [3]. Recently Deshmukh and Husain [5] have also studied these submanifolds. In fact, they have proved a classification theorem when the dimension of the submanifold M is ≥ 5 . In this paper we consider 3-dimensional totally umbilical CR-submanifolds of a Kaehler manifold. For this case we have obtained the following theorem:

THEOREM 1.1. Let M be a compact 3-dimensional totally umbilical CR-submanifold of a Kaehler manifold \overline{M} , of positive holomorphic sectional curvature. If the length of the mean curvature vector of M does not vanish then M is diffeomorphic either to S^3, RP^3 or the lens space $L^3_{p,q}$.

2. PRELIMINARIES.

Let \overline{M} be an *m*-dimensional Kaehler manifold with almost complex structure *J*. A(2p+q)dimensional submanifold *M* of \overline{M} is called a *CR*-submanifold if there exists a pair of orthogonal complementary distributions *D* and \overline{D} such that JD = D and $J\overline{D} \subset \nu$, where ν is the normal bundle of *M* and dim $\overline{D} = q[1]$. Thus the normal bundle ν splits as $\nu = J\overline{D} \oplus \mu$, where μ is invariant subbundle of ν under *J*. A *CR*-submanifold is said to be proper if neither $D = \{0\}$ nor $\overline{D} = \{0\}$.

We denote by $\overline{\nabla}, \nabla, \overline{\nabla}$ the Reimannian connection on \overline{M}, M and the normal bundle respectively. They are related by

1

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{2.1}$$

$$\overline{\nabla}_X N = -A_N X + \overline{\nabla}_X N, \qquad N \in \nu$$
(2.2)

where h(X,Y) and $A_N X$ are the second fundamental forms which are related by

$$g(h(X,Y),N) = g(A_N X,Y)$$
(2.3)

Now a CR-submanifold is said to be totally umbilical if

$$h(X,Y) = g(X,Y)H$$

where $H = \frac{1}{n}$ (trace h) is the main curvature vector. If M is totally umbilical CR-submanifold, then equations (2.1) and (2.2) become

$$\overline{\nabla}_{X}Y = \nabla_{X}Y + g(X,Y)H \tag{2.4}$$

$$\overline{\nabla}_{X}N = -g(H,N)X + \overline{\nabla}_{X}N \tag{2.5}$$

For $X, Y, Z, W \in X(M)$, the equation of Gauss is given by

$$R(X,Y;Z,W) = \overline{R}(X,Y;Z,W) + g(h(X,W),h(Y,Z)) - g(h(X,Z),h(Y,W))$$
(2.6)

3. 3-DIMENSIONAL CR-SUBMANIFOLD OF A KAEHLER MANIFOLD.

(A) Let M be a compact totally umbilical 3-dimensional CR-submanifold of a Kaehler manifold \overline{M} . If $\dim D = 0$, then M will be totally real. Therefore, we assume that $\dim D \neq 0$. Since M is 3-dimensional it follows that $\dim D = 2$. We can then choose a frame field $\{X, JX, Z\}$ on M, where $X \in D$ and $Z \in \overline{D}$. We first have the following:

LEMMA 1. Let $\{X, JX, Z\}$ be a frame field on $M, X \in D, Z \in \overline{D}$. Then $\nabla_Z Z = 0$. and $H \in J\overline{D}$. PROOF. Using (2.4) and (2.5) in the equation $\overline{\nabla}_Z JZ = J\overline{\nabla}_Z Z$, we obtain

$$-g(H,JZ)JZ + J \overline{\nabla}_Z JZ = -\nabla_Z Z - h(Z,Z)$$
(3.1)

Taking inner produce in (3.1) with $W \in D$ we have

$$g(\nabla_Z Z, W) = 0 \qquad \qquad W \in D \tag{3.2}$$

From (3.2) we have $\nabla_Z Z \in \overline{D}$. Since g(Z,Z) = 1, we also have $\nabla_Z Z \in D$. Therefore $\nabla_Z Z = 0$. Now for $X, Y \neq 0$ in D we use (2.4) and the equation $J \overline{\nabla}_X Y = \overline{\nabla}_X J Y$ to get

$$J \nabla_{\mathbf{X}} Y + g(\mathbf{X}, Y) J H = \nabla_{\mathbf{X}} J Y + g(\mathbf{X}, J Y) H$$
(3.3)

Taking inner produce in (3.1) with $N \in \mu$ we have

$$g(X,Y)g(JH,N) = g(X,JY)g(H,N)$$
(3.4)

Т

In particular if we let Y = JX in (3.4) we get

$$||X|| g(H,N) = 0, \quad N \in \mu.$$
 Therefore $H \in J\overline{D}$. (3.5)

Consider the frame field $\{X, JX, Z\}$ on M. Since M is totally umbilical the equation h(Y, W) = g(Y, W)H for $Y, W \in X(M)$ implies that

$$h(X,JX) = h(X,Z) = h(JX,Z) = 0$$
$$h(X,X) = h(JX,JX) = h(Z,Z) = H \equiv \alpha JZ$$
(3.6)

for some smooth function α on M, since $H \in JD^{\perp}$.

Using (2.3) with N = JZ we get

$$AX = \alpha X, \qquad AJX = \alpha JX, \qquad AZ = \alpha Z$$
 (3.7)

So the frame field $\{X, JX, Z\}$ diagonalizes A. Now using the equation $(\overline{\nabla}_X J)(X) = 0$ and $(\overline{\nabla}_J X J)(X) = 0$ with the help of (3.6) we get

$$g(\nabla_X X, Z) = 0, \qquad g(\nabla_J X, Z) = 0 \tag{3.8}$$

Also using the equation $\nabla_Z Z = 0$ from Lemma 1 we have

$$g(\nabla_Z X, Z) = 0, \qquad g(\nabla_Z J X, Z) = 0 \tag{3.9}$$

Then using the equation $(\overline{\nabla}_X J)(Z) = 0$ and (3.7) we obtain

$$g(\nabla_X Z, X) = 0, \qquad g(\nabla_X Z, JX) = \alpha \tag{3.10}$$

and using the equation $(\overline{\nabla}_{JX}J)(Z) = 0$ we have

$$g(\nabla_{JX}Z, X) = -\alpha, \quad g(\nabla_{JX}Z, JX) = 0 \tag{3.11}$$

Using equations (3.8), (3.9), (3.10), and (3.11) one can write the following equations for the frame field $\{X, JX, Z\}$:

$$\nabla_{X}Z = \alpha JX, \qquad \nabla_{JX}Z = -\alpha X, \qquad \nabla_{Z}Z = 0$$

$$\nabla_{X}X = aJX, \qquad \nabla_{JX}X = -bJX + \alpha Z, \qquad \nabla_{Z}X = cJX \qquad (3.12)$$

$$\nabla_{X}JX = -aX - \alpha Z, \qquad \nabla_{JX}JX = bX, \qquad \nabla_{Z}JX = -cX$$

for some smooth functions a, b and c.

Now we are ready to prove the following:

LEMMA 2. For the frame field $\{X, JX, Z\}$ we have

- (i) $R(X,Z;Z,X) = ||H||^2$
- (ii) $R(X,JX;JX,X) = \overline{R}(X,JX;JX,X) + ||H||^2$
- (iii) $R(Z, JX, JX, Z) = ||H||^2$

PROOF. Using equations (3.12) in the equation

 $R(X,Z;Z,X) = g(\nabla_X \nabla_Z Z - \nabla_Z \nabla_X Z, -\nabla_Z Z, X), \text{ we obtain (i) and (iii). (ii) follows from the Gauss equation (2.6) and the equation <math>h(X,Y) = g(X,Y)H.$

PROOF OF THE THEOREM. Since $\overline{R}(X, JX; JX, X) > 0$ and $||H|| \neq 0$ it follows from (i), (ii), and (iii) of Lemma 2 that all plane sections of M have strictly positive sectional curvature. Therefore, the Ricci-curvature of M is strictly positive. Hence by Hamilton's theorem (cf. [4]) it follows that M is diffeomorphic to either S^3, RP^3 or the lens space $L^3_{p,q}$.

ACKNOWLEDGEMENT. The author would like to thank Dr. Sharief Deshmukh for useful discussion while preparing this paper.

REFERENCES

- 1. BEJANCU, A. CR-submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc., <u>69</u> (1978), 135-142.
- BEJANCU, A. Umbilical CR-submanifolds of a Kaehler manifold, <u>Rend. Mat</u>. <u>13</u> (1980), 431-466

- 3. BLAIR, D.E. and CHEN, B.Y., On *CR*-submanifolds of Hermitian manifolds, <u>Israel J. Math.</u> 34 (1980), 353-363
- 4. HAMILTON, R.S., Three manifolds with positive Ricci Curvature, <u>J. Differential Geom. 17</u> (1982), 255-306
- 5. DESHMUKH, S. and HUSAIN, S., Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J. 9 (1986), 425-429.