APPROXIMATION BY FINITE RANK OPERATORS WITH RANGES IN c_o

AREF KAMAL

Department of Mathematics and Computer Science United Arab Emirates University P.O. Box 17551 Al-Ain United Arab Emirates

(Received July 25, 1991 and in revised form August 13, 1991)

ABSTRACT. In this paper the author characterizes all those spaces X, for which $K_n(X,c_0)$ is proximinal in $L(X,c_0)$. Some examples were found that satisfy this characterization.

KEY WORDS AND PHRASES. Proximinal, best approximation, selection, extremal subspaces, n-width. 1991 AMS SUBJECT CLASSIFICATION CODES. 46.

1. INTRODUCTION.

The closed subset A of the normed linear space X, is said to be "proximinal" in X if for each $x \in X$, there is an element $y_x \in A$, such that:

$$d(x, A) = \inf\{(\|x - y\|; y \in A\} = \|x - y_x\|,$$

where d(x,A) is the distance of x from A. The element y_x is called a "best approximation" of x in A. The best approximation need not be unique, and the set-valued function $P_A: X \to 2^A$ defined by

$$P_{A} = \{(y \in A; d(x, A) = ||x - y||\}$$

is called the metric projection of X into A. If A is proximinal in X then $P_A(x) \neq \phi$ for each $x \in X$, in this case any function $f: X \rightarrow A$ satisfying that $f(x) \in P_A(x)$ for each $x \in X$, is called a "selection" for the metric projection P_A .

If A is a subset of X, and N is a subspace of X, then the "deviation" of A from N is defined to be

$$\delta(A,N) = \sup\{(d(x,N); x \in A\},\$$

and the n-width of A in X is defined to be

 $d_n(A, X) = inf\{(\delta(A, N); N \text{ is an n-dimensional subspace of } X\}.$

If there is an n-dimensional subspace N_o of X, such that $d_n(A, X) = \delta(A, N_o)$ then $d_n(A, X)$ is said to be "attained", and the subspace N_o is said to be an "extremal subspace" for $d_n(A, X)$. It is well known (see Garkavi [4]), that if X^* is the dual space of the normed linear space X, then $d_n(A, X^*)$ is attained.

If X and Y are two normed linear spaces, then L(X,Y) denotes the set of all bounded linear operators from X to Y, K(X,Y) the set of all compact operators in L(X,Y), and $K_n(X,Y)$ the subset of K(X,Y) consisting of all operators of rank n.

The proximinality of K(X,Y) in L(X,Y) were studied by several authors, (see for examples Feder [3], Lau [8], Mach [9], Mach and Ward [10], and Saatkamp [11]). Duetsch, Mach, and

Saatkamp [1], Kamal ([5], [6], and [7]) studied the proximinality of $K_n(X,Y)$ in L(X,Y) and K(X,Y)in details, however, one of the problems left unsolved is the problem 5.2.2 mentioned by Duetsch. Mach and Saatkamp [1], concerning the proximinality of $K_n(X, c_o)$, in $L(X, c_o)$ where c_o is the space of all real sequences that converges to zero. The problem is divided into two parts, the first part is to characterize all those spaces X for which $K_n(K,c_0)$ is proximinal in $L(X,c_0)$, and the second part is to show whether $K_n(X,c_o)$ is proximinal in $L(X,c_o)$ or not, when X = c or 1_{∞} . Kamal [7] showed that $K_n(c,c_o)$ is not proximinal in $L(c,c_o)$, given a partial solution for the second part of the mentioned problem. Deutsch, Mach, and Saatkamp [1] showed that if $X = c_0$ or if X^* is uniformly convex, then $K_n(X,c_o)$ is proximinal in $L(X,c_o)$, Kamal [6] showed that $K_n(1_1,c_o)$ is not proximinal in $L(\ell_1, c_o)$, also Kamal [7] showed that if Q is a compact Hausdorff space that contains an infinite convergent sequence, then $K_n(C(Q), c_0)$ is not proximinal in $L(C(Q), c_0)$. In this paper a theorem is proved to characterize all those spaces X, for which $K_n(X,c_o)$ is proximinal in $L(X,c_o)$, this characterization includes $X = c_0$, X for which X^* is uniformly convex, and X such that the metric projection P_N from X^{*} onto any of its n-dimensional subspaces N, has a selection which is ω^* continuous at zero. A point worth mentioning is that although c_o is a one codimensional subspace of c, there are spaces X for which $K_n(X,c_o)$ is proximinal in $L(X,c_o)$, meanwhile $K_n(X,c)$ is not proximinal in L(X,c), for example Deutsch, Mach and Saatkamp [1] showed that $K_n(c_o,c_o)$ is proximinal in $L(c_o, c_o)$, meanwhile Kamal [7] showed that $K_n(c_o, c)$ is not proximinal in $L(c_o, c)$.

The rest of introduction will cover some definitions, and known results that will be used later in Section 2.

If X is a normed linear space then $c_o(X^*, \omega^*)$ denotes the Banach space of all bounded sequences $\{x_i\}$ in X^* that converge to zero in the ω^* -topology induced on X^* by X, $c_o(X^*)$ is the Banach space of all sequences $\{x_i\}$ in X^* that converge to zero in the topology defined on X^* by its norm, and if $n \ge 1$ is any positive integer, then $c_o(X^*, n)$ denotes the union of all $c_o(N)$, where N is an n-dimensional subspace of X^* . The norm on $c_o(X^*, \omega^*)$ is the suprimum norm. If $\{x_i\}$ is an element in $c_o(X^*, \omega^*)$ then for any positive integer $n \ge 1$, define

$$a_n(\{x_i\}) = \inf\{ \| \{x_i\} - \{y_i\} \| ; \{y_i\} \in c_o(X^*, n) \}$$

The following theorem can be obtained as a corollary, from the theorem of Dunford and Shwartz [2, p. 490].

THEOREM 1.1. Let X be normed linear space. The mapping $\alpha: L(X, c_o) \rightarrow c_o(X^*, \omega^*)$ defined by $\alpha(T)_i(x) = T(x)_i$ where i = 1, 2, ..., and $x \in X$, is an isometric isomorphism. Furthermore $\alpha(K(X, c_o)) = c_o(X^*)$ and $\alpha(K_n(X, c_o)) = c_o(X^*, n)$.

As corollary of the Theorem 1.1, one can obtain the following:

COROLLARY 1.2. If X is a normed linear space then for any positive integer $n \ge 1$, the set $K_n(X,c_o)$ is proximinal in $L(X,c_o)$ (resp. $K_n(X,c_o)$) if and only if $c_o(X^*,n)$ is proximinal in $c_o(X^*,\omega^*)$ (resp. $c_o(X^*)$).

According to Corollary 1.2 to study the proximinality of $K_n(X,c_o)$ in $L(X,c_o)$ (resp. $K(X,c_o)$), it is enough to study the proximinality of $c_o(X^*,n)$ in $c_o(X^*,\omega^*)$ (resp. $c_o(X^*)$).

2. THE PROXIMINALITY OF $K_n(X, c_o)$ IN $L(X, c_o)$.

In this paper if $\{x_i\}$ is an element in $c_o(X^*, \omega^*)$, then $d_n(\{x_i\}, X^*)$ (resp. $\delta(\{x_i\}, N)$ denotes the n-width (resp. the deviation from N) of the subset $\{x_1, x_2, x_3, ...\}$ of X^* .

THEOREM 2.1 Let X be a normed linear space, and let $n \ge 1$ be any positive integer. If $\{x_i\}$ is a bounded sequence in X^* then

$$a_n(\{x_i\}) = max\{d_n(\{x_i\}, X^*), \overline{lim} || x_i || \}.$$

Furthermore there is an n-dimensional subspace N_o of X^* , such that $a_n(\{x_i\}) = d(\{x_i\}, c_o(N))$.

PROOF. First it will be shown that $a_n(\{x_i\}) \ge max\{d_n(\{x_i\}, N^*), \overline{\lim} \|x_i\|\}$. By Garkavi [4], there is an n-dimensional subspace N_o of X^* such that $\delta(\{x_i\}, N) = d_n(\{x_i\}, X^*)$. For each i = 1, 2, ..., let z_i be a best approximation for x_i from N_o , and let $\varepsilon > 0$ be given, there is a positive integer $n \ge 1$ such that for each $i \ge m$, $||x_i|| \le \overline{\lim} ||x_i|| + \varepsilon$. Define the sequence $\{y_i\}$ in $c_o(N_o)$ as follows.

$$y_i = \begin{cases} z_i & \text{if } i \le m \\ 0 & \text{if } i > m. \end{cases}$$

Then

$$\begin{aligned} a_n(\{x_i\}) &\leq \|\{x_i\} - \{y_i\}\| = \sup\{\|x_i - y_i\|; i = 1, 2, ..., \} \\ &= \max\{\max\{\|x_i = y_i\|; i = 1, 2, ..., m\}, \sup\{\|x_i\|; 1 = m + 1, m + 2, ...\}\} \\ &\leq \max\{d_n(\{x_i\}, X^*), \overline{lim}\|x_i\| + \varepsilon\}. \end{aligned}$$

Since ε is arbitrary it follows that $a_n(\{x_i\}) \le \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\|\}$. Second to show that $a_n(\{x_i\} \ge \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\|\})$, one should notice first that $a_n(\{x_i\}) \ge \overline{\lim} \|x_i\|$, indeed if $\{y_i\} \in c_o(X^*, n)$ then

$$||\{x_i\} - \{y_i\}|| = \sup\{||x_i - y_i||\} \ge \overline{\lim} ||x_i - y_i|| = \overline{\lim} ||x_i||.$$

Let $\varepsilon > 0$ be given, there is an n-dimensional subspace N of X^* , and a sequence $\{y_i\} \in c_0(N)$ such that $a_n(\{x_i\}) \ge ||\{x_i\} - \{y_i\}|| - \varepsilon$. Therefore

$$|| \{x_i\} - \{y_i\} || = \sup\{||x_i - y_i||\} \ge \sup\{(x_i, N) = \delta(\{x_i\}, N') \ge d_n(\{x_i\}, X^*)$$

Hence $a_n(\{x_i\}) = d(\{x_i\}, X^*) - \varepsilon$, and since ε is arbitrary it follows that

$$a_n(\{x_i\}) \ge d_n(\{x_i\}, X^*).$$

To prove the fact that there is an n-dimensional subspace N of X^* , such that $a_n(\{x_i\}) = d_n(\{x_i\}, c_o(N))$, Let N be an extremal subspace for $d_n(\{x_i\}, X^*)$, and for each i = 1, 2, ..., let z_i be a best approximation for x_i from N. Let $\varepsilon > 0$ be given, and define the sequence $\{y_i\}$ in $c_o(N)$ as in the first part of the proof, then

$$\begin{split} \| \{x_i\} - \{y_i\} \| &= \sup\{ \|x_i - y_i\| \} \\ &= \max\{\max\{ \|x_i - z_i\|; i = 1, 2, ..., m\}, \sup\{ \|x_i\|; i = m + 1, m + 2, ...\} \} \\ &\leq \max\{\delta(\{x_i\}, N), \ \overline{lim} \|x_i\| + \varepsilon\} \\ &\leq \max\{d_n(\{x_i\}, X^*), \overline{lim} \|x_i\| \} + \varepsilon \\ &= a_n(\{x_i\}) + \varepsilon. \end{split}$$

But ε is arbitrary so $d(\{x_i\}, c_o(N)) = a_n(\{x_i\})$.

THEOREM 2.2. Let X be a normed linear space. For any positive integer $n \ge 1$, $K_n(X, c_o)$ is proximinal in $K(X, c_o)$.

PROOF. Let $\{x_i\}$ be an element in $c_o(X^*)$, by Corollary 1.2, it is enough to find an element $\{y_i\}$ in $c_o(X^*, n)$ such that $||\{x_i\} - \{y_i\}|| = a_n(\{x_i\})$. Since $\lim_{i \to \infty} ||x_i|| = 0$ it follows that $\overline{\lim} ||x_i|| = 0$, thus by Theorem 2.1, $a_n(\{x_i\}) = d_n(\{x_i\}, X^*)$. Let N_o be an extremal subspace for $d_n(\{x_i\}, X^*)$, and for each i = 1, 2, ..., let y_i be a best approximation for x_i from N_o . Since $\lim_{i \to \infty} ||x_i|| = 0$, it follows that $\lim_{i \to \infty} ||x_i|| = 0$, it follows that $\lim_{i \to \infty} ||y_i|| = 0$; that is, $\{y_i\} \in c_o(N_o)$. Thus

$$|| \{x_i\} - \{y_i\} || = \sup\{||x_i - y_i||\} = \delta(\{x_i\}, N_o) = d_n(\{x_i\})X^*) = a_n(\{x_i\}).$$

LEMMA 2.3. Let X be a normed linear space, and let $\{x_i\}$ be a bounded sequence in X^* . a) If $d_n(\{x_i\}, X^*) > \overline{lim} ||x_i||$, then $a_n(\{x_i\})$ is attained. b) If $d_n(\{x_i\}, X^*) \leq \overline{\lim} ||x_i||$, and there is an extremal subspace N_o for $d_n(\{x_i\}, X^*)$ such that $\overline{\lim} d(x_i, N_o) < \overline{\lim} ||x_i||$, then $a_n(\{x_i\})$ is attained.

PROOF. a) Assume that N is an extremal subspace for $d_n(\{x_i\}, X^*)$, and let $\alpha = d_n(\{x_i\}, X^*) - \overline{lim} ||x_i||$, then there is a positive integer $m \ge 1$ such that for each $i \ge m$, one has $||x_i|| \le \overline{lim} ||x_i|| + \alpha$. For each $i \le m$, let z_i be a best approximation for x_i from N_o , and define the sequence $\{y_i\}$ in $c_o(N_o)$ as follows.

$$y = \begin{cases} z_i & \text{if } i \le m \\ 0 & \text{if } i > m. \end{cases}$$

Then

$$\begin{split} \| \{x_i\} - \{y_i\} \| &= \max\{\max\{\|x_i - z_i\|; i = 1, 2, ..., m\}, \ \sup\{\|x_i\|; i = m + 1, m + 2, ..., \}\}\\ &\leq \max\{\delta(\{x_i\}, N_o), \overline{lim} \|x_i\| + \alpha\}\\ &= d_n(\{x_i\}, X^*) = a_n(\{x_i\}). \end{split}$$

b) let $\alpha = \overline{\lim} ||x_i||, \beta = \overline{\lim} d(x_i, N_o)$, and $\gamma = \alpha - \beta$. Then $\gamma > 0$.

Let $\{\varepsilon_i\}$ be a sequence of positive real numbers, satisfying that $\lim_{i\to\infty} \varepsilon_i = 0$, for each $i = 1, 2, ..., d(x_i, N_o) \le \beta + \varepsilon_i$ and for each $i = 1, 2, ..., ||x_i|| \le \alpha + \varepsilon_i$. For each $i = 1, 2, ..., ||z_i|$ be a best approximation for x_i from N_o , and define the sequence $\{y_i\}$ in N_o as follows,

$$y_i + \begin{cases} z_i & \text{if } e \ge \gamma \\ \frac{\varepsilon_i}{\gamma} \cdot z_i & \text{if } e_i < \gamma. \end{cases}$$

Since $\{z_i\}$ is a bounded sequence in N_o , and $\lim_{i\to\infty} \varepsilon_i = 0$, it follows that $\{y_i\} \in c_o(N_o)$. Furthermore for each $i = 1, 2, ..., \text{ if } \varepsilon_i > \gamma \text{ then}$

$$||x_i - y_i|| \le d(x_i, N_o) \le d_n(\{x_i\}, X^*) \le a(\{x_i\}),$$

and if $\varepsilon_i < \gamma$ then

$$\begin{split} \| \mathbf{x}_{i} - \mathbf{y}_{i} \| &\leq (1 - \frac{\varepsilon_{i}}{\gamma}) \| \mathbf{x}_{i} \| + \frac{\varepsilon_{i}}{\gamma} \| \mathbf{x}_{i} - \mathbf{z}_{i} \| \\ &\leq (1 - \frac{\varepsilon_{i}}{\gamma})(\alpha + \varepsilon_{i}) + \frac{\varepsilon_{i}}{\gamma}(\alpha - \gamma + \varepsilon_{i}) \\ &= \alpha = a_{n}(\{\mathbf{x}_{i}\}). \end{split}$$

Thus $|| \{x_i\} - \{y_i\} || = a_n(\{x_i\}).$

Lemma 2.4 is a continuation for Lemma 2.3.

LEMMA 2.4. Let X be a normed space, and let $\{x_i\}$ be a bounded sequence in X^{*}. Assume that $d_n(\{x_i\}, X^*) = \overline{lim} ||x_i||$, and for each extremal subspace N for $d_n(\{x_i\}, X^*)$ one has $\overline{lim} d(x_i, N) = \overline{lim} ||x_i|| = \alpha$. Let N be a extremal subspace for $d_n(\{x_i\}, X^*)$, and for each i = 1, 2, ..., define

$$\varepsilon_i = \begin{cases} 0 & \text{if } \|x_i\| \leq \alpha \\ \|x_i\| - \alpha & \text{if } \|x_i\| > \alpha \end{cases}, \qquad \qquad \delta_i = \alpha - d(x_i, N_o), \text{ and } \alpha_i = \begin{cases} 0 & \text{if } \varepsilon_i + \delta_i = 0 \\ \frac{\varepsilon_i}{\varepsilon_i + \delta_i} & \text{if } \varepsilon_i + \delta_i \neq 0. \end{cases}$$

If $\lim \alpha_i = 0$ then $a_n(\{x_i\})$ is attained.

PROOF. Let z_i be a best approximation for x_i from N_o , and let $y_i = \alpha_i$, z_i , then the sequence $\{y_i\}$ is an element in $c_o(N_o)$. Furthermore for each i = 1, 2, ...,

$$\begin{split} \|x_i - y_i\| &\leq (1 - \alpha_i) \|x_i\| + \alpha_i \|x_i - z_i\| \\ &\leq (1 - \alpha_i)(\alpha + \varepsilon_i) + \alpha_i(\alpha - \delta_i) \\ &= \alpha + \varepsilon_i - \alpha_i(\varepsilon_i + \delta_i). \end{split}$$

If $\alpha_i = 0$ then $\varepsilon_i = 0$ so $||x_i - y_i|| = \alpha$, and if $\alpha_i \neq 0$ then

$$\|x_i - y_i\| \leq \alpha + \varepsilon_i - \frac{\varepsilon_i}{\varepsilon_i + \delta_i} (\varepsilon_i + \delta_i) = \alpha.$$

DEFINITION 2.5. Let X be a normed linear space. The bounded sequence $\{x_i\}$ in $c_o(X^*, \omega^*)$ is said to be an "*n*-border" sequence if it satisfies the following,

1. $\lim_{i \to \infty} ||x_i||$ exists, and for each extremal subspace N for $d_n(\{x_i\}, X^*)$, one has

$$\overline{\lim} \ d(x_i, N) = \lim_{i \to \infty} \|x_i\| = d_n(\{x_i\}, X^*)$$

2. For each extremal subspace N for $d_n(\{x_i\}, X^*)$ if ε_i , δ_i and α_i as in Lemma 2.4 then $\overline{\lim} \alpha_i > 0$.

THEOREM 2.6. Let X be a normed linear space, and let $n \ge 1$ be a positive integer. Then $K_n(X, c_o)$ is proximinal in $L(X, c_o)$ if and only if for each n-border sequence $\{x_i\}$ in X^* , $a_n(\{x_i\})$ is attained.

PROOF. If there is an n-border sequence $\{x_i\}$ in X^* such that $a_n(\{x_i\})$ is not attained, then since $\{x_i\} \in c_o(X^*, \omega^*)$, it follows by Corollary 1.2 that $K_n(X, c_o)$ is not proximinal in $L(X, c_o)$. To prove the other part, let $\{x_i\}$ be an element in $c_o(X^*, \omega^*)$. If $d_n(\{x_i\}, X^*) > \overline{lim} ||x_i||$, or if $d_n(\{x_i\}, X^*) \leq \overline{lim} ||x_i||$ and there is an extremal subspace N for $d_n(\{x_i\}, X^*)$, such that $lim d(x_i, N) < \overline{lim} ||x_i||$ then by Lemma 2.3, $a_n(\{x_i\})$ is attained.

Assume that $d_n(\{x_i\}, X^*) = \overline{\lim} \|x_i\|$, and for each extremal subspace N for $d_n(\{x_i\}, X^*)$, one has $\overline{\lim} d(x_i, N) = \overline{\lim} \|x_i\|$, let ε_i , δ_i and α_i be as in Lemma 2.4. If there is an extremal subspace N for $d_n(\{x_i\}, X^*)$ such that $\lim_{i \to \infty} \alpha_i = 0$ then by Lemma 2.4, $a_n(\{x_i\})$ is attained. Therefore one may assume that for any extremal subspace N for $d_n(\{x_i\}, X^*)$ one has $\overline{\lim} \alpha_i > 0$. Let $\alpha = d_n(\{x_i\}, X^*)$ and let $\{x_i\}$ be the largest subsequence of $\{x_i\}$ satisfying that $||x_i|| > \alpha$ for each i_k . Thus for each i, if x_i is not an element in $\{x_i\}$ then $||x_i|| \le \alpha$. The sequence $\{x_i\}$ is an n-border sequence in X^* , so there is an n-dimensional subspace N of X^{*}, and a sequence $\{z_i\} \in c_o(N)$ such that $||\{x_i\} - \{z_i\}\}||$ $= a_n(\{x_i\}) = \alpha$.

Define the sequence $\{y_i\}$ in N as follows.

$$y_i = \begin{cases} z_i & \text{if } \|x_i\| > \alpha \\ 0 & \text{if } \|x_i\| \le \alpha. \end{cases}$$

Then $\{y_i\} \in c_o(N)$, and $||\{x_i\} - \{y_i\}|| = \alpha = a_n(\{x_i\})$.

COROLLARY 2.7. Let X be a normed linear space, and let $n \ge 1$ be a positive integer. If X^* is uniformly convex then $K_n(X,c_o)$ is proximinal in $L(X,c_o)$.

PROOF. Let $\{x_i\}$ be an *n*-border sequence in X^* , and let $\alpha = \lim_{i \to \infty} ||x_i||$. Without loss of generality assume that $x_i \neq 0$ for each *i*. Let *N* be any extremal subspace for $d_n(\{x_i\}, X^*)$, and let y_i be the best approximation for x_i from *N*. Since $\|\frac{x_i}{\|x_i\|}\| = 1$, $\frac{\|x_i - y_i\|}{\alpha} \leq 1$, and

$$\lim_{i \to \infty} \|\frac{x_i}{\|x_i\|} + \frac{x_i - y_i}{\alpha}\| = \lim_{i \to \infty} (\frac{\alpha + \|x_i\|}{\alpha \|x_i\|}) \|x_i - \frac{y_i}{\alpha + \|x_i\|}\| \ge \lim_{i \to \infty} (\frac{\alpha + \|x_i\|}{\alpha \|x_i\|}) \|x_i - y_i\| = 2.$$

It follows by the fact that X^* is uniformly convex that $\lim_{i\to\infty} \left\|\frac{x_i}{\|x_i\|} - \frac{x_i - y_i}{\alpha}\right\| = 0$. But then $\lim_{i\to\infty} y_i = 0$, so $\{y_i\} \in c_o(N)$ and $\|\{x_i\} - \{y_i\}\| = a_n(\{x_i\})$.

Corollary 2.7 was proved by Deutsch, Mach, and Saatkamp [1] in a different way.

COROLLARY 2.8. Let X be a normed linear space, and let $n \ge 1$ be a positive integer. If for each n-dimensional subspace N of X^{*}, the metric projection P_n has a selection which is ω^* -continuous at zero, then $K_n(X, c_o)$ is proximinal in $L(X, c_o)$.

PROOF. Let $\{x_i\}$ be an element in $c_o(X^*, \omega^*)$ and let N be an extremal subspace for $d_n(\{x_i\}, X^*)$. Since the metric projection P_N has a selection which is ω^* -continuous at zero, it follows that there is a sequence $\{y_i\}$ in N, satisfying that $y_i \in P_N(x_i)$ for each i, and that $\{y_i\}$

converges ω^* -to zero. But N is of finite dimension, thus $\{y_i\} \in c_o(N)$. Furthermore

$$\| \{x_i\} - \{y_i\} \| = \delta(\{x_i\}, N) = d_n(\{x_i\}, X^*) = a_n(\{x_i\}).$$

From Corollary 2.8 one concludes that for each positive integer $n \ge 1$, if $X = c_0$ or $l_p, l ,$ $then <math>K_n(X, c_0)$ is proximinal in $L(X, c_0)$. Proposition 2.9 clarify that. The fact that $K_n(c_0, c_0)$ is proximinal in $L(c_0, c_0)$ was proved first by Deutsch, Mach, and Saatkamp [1].

PROPOSITION 2.9. Let $n \ge 1$ be a positive integer and let $X = c_0$ or $l_p, l . The metric projection <math>P_N$ from X^* onto any of its *n*-dimensional subspace N, has a selection which is ω^* -continuous at zero.

PROOF. Let N be any n-dimensional subspace of X^* , $\{x_i\}$ be any bounded sequence in X^* that converges ω^* -to zero, and let $\{y_i\}$ by any sequence in N, satisfying that $y_i \in P_N(x_i)$ for each *i*. It will be shown that $\{y_i\} \in c_0(N)$. The sequence $\{y_i\}$ is a bounded sequence in a finite dimensional subspace of X^* , so it has a convergent subsequence $\{y_i\}$ that converges to y_0 in N, it will be shown that $y_0 = 0$. Assume not, and without loss of generality assume that $\{y_i\}$ converges to y_0 , and that $X^* = l_p, l \le p < \infty$. Let $t_i = x_i - (y_i - y_0), r_i = x_i - y_i$, and let $\varepsilon > 0$ be such that $\varepsilon < ||y_0||^p$, then as in Proposition 3 of Mach [9], there is a positive integer $m \ge 1$ such that for each $i \ge m$ one has, $|||t_i - y_0||^p - ||t_i||^p - ||y_0||^p| < \varepsilon$, thus $||t_i - y_0||^p \ge ||t_i||^p + ||y_0||^p - \varepsilon$, that is

$$\|x_{i} - y_{i}\|^{p} \geq \|x_{i} - (y_{i} - y_{o})\|^{p} + \|y_{o}\|^{p} - \varepsilon > \|x_{i} - (y_{i} - y_{o})\|^{p}.$$

So for each i > m one has $||x_i - (y_i - y_o)|| > ||x_i - y_i||$, which contradict the fact that $||x_i - y_i|| = d(x_i, N)$, therefore $y_o = 0$.

REFERENCES

- 1. DEUSTCH, F., MACH, J., & SAATKAMP, K., Approximation by finite rank operators, <u>J.</u> <u>Approx. Theory 33</u> (1981), 199-213.
- 2. DUNFORD, N., & SCHWARTZ, J., Linear Operators I, Wiley Interscience, New York, 1958.
- FEDER, A., On certain subsets of L₁[0,1] and nonexistence of best approximation in some spaces of operators, J. Approx. Theory 29 (1980), 170-177.
- GARKAVI, A., The best possible net and the best possible cross section of a set in a normed linear spaces, <u>Amer. Math. Soc. Transl. 39</u> (1964), 111-132.
- 5. KAMAL, A., On proximinality and sets of operators I, Best approximation by finite rank operators, J. Approx. Theory 47 (1986), 132-145.
- KAMAL, A., On proximinality and sets of operators II, nonexistence of best approximation from the sets of finite rank operators, J. Approx. Theory 47 (1986), 146-155.
- KAMAL, A., On proximinality and sets of operators III, approximation by finite rank operators on spaces of continuous functions, J. Approx. Theory 47 (1986), 156-171.
- 8. LAU, K., Approximation by continuous vectors valued functions, <u>Studia</u>, <u>Math. 68</u> (1980), 291-298.
- MACH, J., On the proximinality of compact operators with ranges in C(S), Proc. Am. Math. Soc. 72 (1978), 99-104.
- MACH, J. & WARD, J., Approximation by compact operators on certain Banach spaces, <u>J.</u> Approx. Theory 23 (1978), 274-286.
- SAATKAMP, K., Best approximation in the space of bounded operators and applications, <u>Math. Ann. 25</u> (1980), 35-54.