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ABSTRACT. We show the existence of (e)-almost contact metric structures and give exam-

ples of (e)-Sasakian manifolds. Then we get a classification theorem for real hypersurfaces of
indefinite complex space-forms with parallel structure vector field. We prove that (e)-Sasakian
redl hypersurfaces of a semi-Euclidean space are either open sets of the pseudosphere

2aWl(1) or of the pscudohyperbolic space H,_ (1). Finally, we get the causal character of
cosymplectic real hypersurfaccs of indefinite complex space-forms.
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0. INTRODUCTION. Indefinite Kahler manifolds have been introduced by Barros-R.(,mcr

[1]. Because of the signature of the metric we expect some essential changes in the study of

submanifolds in such spaces. Some new results on this matter are obtained in the present

paper.

Our ptu’pose is first to investigate the induced structures on real hyperstu-faces of an indef-

inite Kahler manifold and then to study some particular classes of such structures. Thus in

the first section we introduce (e)-Sasakian manifolds which enclose the class of usual Sasakian

manifolds. It has to be noted that in the definition of an (e)-Sasakian manifold it is essential

that the causal character of the characteristic vector field of the structure is preserved. We
close this section with examples of (e)-Sasakian structures on R=’*+1 As far as we know

till now, Takahashi [9] and Duggal [5] have been concerned with Sasakian manifolds with

indefinite metric.

In section 2 we define an (e)-almost contact metric structure on a real hypersurface of

an indefinite Kahlcr manifold and obtain its principal properties. The next two sections are

concerned with two classes of such structures on real hypersurfaces: (e)-Sasakian and (e)-
2scosymplectic structures. In section 3 we show that both the pseudosphere (1) and the

H2n+lpseudohyperbolic space 2,-1 (1) are examples of space-like Sasakian manifolds and time-like

Sasakian manifolds respectively.
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1. (e)-SASAKIAN MANIFOLDS. Let M be a real (2n + 1)-dimensional differcntiable

lm-mifold endowed with an allnost contact structure (f, (,r/). This means that f is a tensor

field of type (1,1), ( is a vector field and r/is a 1-form on M satisfying

It follows that

r/of=0;f()=0; rank f=2n. (1.2)

We then say that M is an almost contact mmtifold (see Blair [4]).
The manifold M is supposed to be paracompact and differentiable of class O. Denote

F(M) the algebra of real differentiable functions on M and by F(TM) the F(M)-module of

differentiable vector fields on M The same notation is used for the set of sections of a vector

bundle over M or over any other madfold.

Throughout the paper, by a semi-ILiemannian metric on M we understand a ,ion-degenerate

symmetric tensor field g of type (0,2), (cf. O’Neill [8]). We now suppose on M there exists a

semi-Pdemannian metric # (see Duggal [5]) that satisfies

g(.fX, .fY) g(X, Y) erl(X)l(Y), VX, Yer(TM) (1.3)

where e +1 It follows that

(X) eg(X,), VXeF(TM) (1.4)

and

e g(,). (1.,5)

Hence is never a light-like vector field on M This implies that the contact distribution

D {X F(TM), r/(X)= 0} is always non-degenerate on M Moreover, thc index of g is

an odd number v 2r + 1 in case is time-like and an even number v 2r otherwisc. This

follows as a consequence of the fact that on M we may consider an orthonormal ficld frame

{E,... ,E,, fE,... ,fE,, } with Ei F(D) and such that g(Ei,Ei) g(fEi, fEi).
We are now concerned with the existence of semi-Riemannian metrics satisfying (1.3). In

the particular case e 1 and r, 0 there exists a Riemannian metric g satisfying (1.3) and M
is the usual almost contact metric manifold (cf. Blair [4]). For the general case, following Blair

[4], and subject to the above mentioned restrictions of the index of g we have the following
result.

THEOREM 1. Let (f,,r/) be an almost contact structure and h0 be a semi-Riemannian

metric on M such that is not a light-like vector field. Then there exists on M a symmetric

tensor field g of type (0,2) satisfying (1.3)

h0 where a h0 (, ) andPROOF. We first define two semi-Riemannian metrics hi -h(Z,Y) h(.f2X,.f2Y) + e,(X),(Y),VX, Y e r(TM).

In order to prove that h is a semi-Riemannian metric we first note that

rl(X) eh(X, )and h(, ,) e.

Then denote by {} the distribution spanned by on M and by D the complementary
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orthogonal distribution to {} with respect to h. Then for any X E F(D), we have

,.(x,x) h(-X + ,(X),-X + ,(X)) + ,(X) h(X,X),

since hl(X,{) 0 and b.l({,{) -e. Thus h is a semi-Riemannian metric on M of the same

index as h on D1 Finally, we define the symmetric tensor field

1
(X,r) {h(X,r) + h(lX, It) + n(x),(r)}

and wc havc

1
g(fX, fY) - {h(fX, fY) + h(-X + /(X), -Y + I(Y))}

g(X, Y) erI(X)rI(Y),

as desired.

Therefore, in general, the above theoren does not provide us a seani-Riexnannian metric on

M satisfying (1.3). However, we may prove the existence of Lorentz metrics satisfying (1.3).

COROLLARY 1. Let (f,,r/) be an ahnost contact structure on M. Then there exists a

Lorcntz metric g on M satisfying (1.3) with e -1.

PROOF. Since M is paracompact there exists a Riemannian metric ho on M We define

b,1, h and g as in Theorem 1 with e -1. Then it is easy to see that both It and g arc Lorcntz

metrics on M Besides, g satisfies (1.3) with e -1.

We call (f,,,rl, g satisfying (1.1) and (1.3) an (e)-almost contact metric structure and M
an (e)zalmost contact metric manifold. Thus we have the following new classes of maxfifolds.

1 e 1 and u 2r. M is called a space-like almost contact metric manifold.

2 e -1 and u 2r + 1. M is cflled a time-like almost contact metric mafifol(t.

An important subclass of the second class is the Lorentz almost contact manifold (e -1,

u 1),recently studied by the second author (see Duggal [5]). As
following the terminology of DuggaJ [5] and the definition of space-time (scc Becm-Ehrlicl [2])
a time orientable Lorentz almost contact manifold will be called a contact space-time, ttcrc
for the sake of completeness, we state the following result (proved in Duggal [5]) on contact

space-times.

THEOREM 2. (Duggal[5]). For an (e)-almost contact metric manifold M, the following
are equivalent-

(1) M is contact space-time.

(2) The characteristic vector field is time-like and the 2n-dimensional contact distribu-
tion (n, jr, g/n) is space-like.

Next, we consider the fundamental 2-form of the (e)-almost contact metric structure
defined by

’(X,Y) g(X, fY),VX, Y F(TM) (1.6)

Then we say that (f,,rt, g is an (e)-contact metric structure if we have

(X, Y) dr(X, Y), VX, Y F(TM). (1.7)

In this case M is an (e)-contact metric manifold. Besides we recall that the almost contact
structure (f,,r/)is normal if

[f, f] + 2dr/(R) 0, (1.8)
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where [f,f] is the Nijcnhuis tensor field associated to f. An (e)-contact metric structure

which is normal is called an (e)-Sasakian structure. A nanifold endowed with an ()-Sasakian
structure is called an ()-Sasakian manifold. As in the case of Riemamfian Sasakian manifolds

we havc.

THEOREM 3. An ()-Mmost contact metric structure (f, C, r/, g) is ()-Sasakian if and only
if

(Vxf)Y=g(X,Y)-e7(Y)X, VX, Y r(TM) (1.9)

where X7 is the Levi-Civita connection with respect to g
If wc replace Y by in (1.9) we get

Vx =-eIX,VX F(TM). (1.10)
Thus, we have:

COROLLARY 2. The characteristic vector field on an (e)-Sasakian manifold is a Killing
vector field.

Sasakian manifolds with indefinite metrics have been first considered by Takahashi [9].
Their importance for physics has been pointed out by one of the present authors (see Duggal

According to the causal character of we have two new classes of (e)-Sasakian manifolds.

Thus in case is space-like (e 1 and r, 2r), (resp. time-like, e -1 mad v 2r + 1)
we say that M is a space-like Sasakian manifold (resp. time-like Sasakian manifold}. In case

e 1 and v 0 we get the well-known concept of Riemannian Sasakian mafifold. Ccrt,’finly

for physics it is important to consider Lorentz metrics. In this case e -1, v 1 and wc call

M a Lorentz-Sasakian manifold or a Sasakian-spacetime (cf. Duggal [5]).
As Wakahashi [9] pointed out, from a space-like Sasakian structure (f, , r/, g, e) we always get

a time-like Sasakian structure (f’, ’, /’, g’, e’), where f’ f, ’ -, 1’ -/, g’ -g, e’
-e and vice versa. However, taking into account that the causal character of dctcrmiw,s

one or another structure we shall consider the general case of (e)-Sasakian structures.

We close the section with some examples of (e)-Sasakian structures on R2"+x. Other
examples we shall give in section 3.

First we make the following notations:

Ov, the p x k null matrix I the k x k unit matrix. For any non-negative integer
s < n we put

-1 for ae {1,... ,s}
e

},
in case s - 0,

1 for a {s+l,. ,n

and e 1 in case s 0

yi z) 1 n as cartesian coordinates on R2"+ and define withThen we consider (z’,
respect to the natural field of frames { 0 o o}-,, --,, a tensor field f of type (1,1) by its matrix.

0,,,, I,, 0,,, ][f]= --[n On,n 0n,1
01,n eaya 0

The differential 1-form 7 is defined by

(1.11)

if s # 0, and

rl dz + yidxi- yi*dxi*
i=1 i*=r+l

(1.12)
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1= - dz- y’dz if s=0.
.=

The vector field is defined for each s 1)y

(1.13)

0
2ezz (1.14)

It is easy to check (1.1) and thus (f,.l) is an almost contact structure on R2’’+1 for each

s E {0,1 n} Finally, we define the scmi-Rienaannian metric g by thc matrix

(1.15)

for s # 0, and

.]4- y’y On,, y’

0.,. . 0.,
y’ 01 ,,, 1

(1.16)

with respect to the natural field of frames. In order to help the reader to see the fight form

of [g] we write it down for n 4 and s 1

"-1 + (y)2 _yly2 _yy: _yly4 0 0 0 0 y
_yly2 1 + (y2)2 y2ya y2y4 0 0 0 0 _y2
_yya y2y: 1 + (y3): yay4 0 0 0 0 _y3
_yy.i y2y4 yay.i 1 + (y4)2 0 0 0 0 _y4

0 0 0 0 -1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

y _y _ya _y4 0 0 0 0 1

An orthonormal field of frames with respect to the semi-Riemannian metric (1.15) is

0 0 0 yiOEi 2--,Ei, 2--; fEi 2 (Oyi* -Z
f.=2 + ,

It is easy to check that (f,,/,g) given by (1.11)-(1.16)is an (e)-Sasakian structure on/i2n+l

for any s E {0,1,... ,n}. In case s 0 and e 1 we obtain the classical Sasakian structure
q2n+lon R2’+ (see Blair [4]). In other cases we get either a space-like Sasakian structure on "2,

R’+ (e -1 s # 0)(e 1 s # 0) or a time-like Sasakian structure on 2(,-s)+
The Lorentz-Sasakian structure is obtained from the latter for s n.

PHYSICAL EXAMPLE. First we need the following information (for details see [2,8]. Let

M be a spacetime manifold, with a Lorentz metric g of signature (-, +,... +). A spacetime M
is called globally hyperbolic if M is a product manifold of the form (M R S,g -dr +G)
with (S, G) a compact Riemannian mafifold. Recently the second author, Duggal [5], has

proved the following physical result, also valid for Sasakian structures.
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THEOREM 4 (Duggal [5]). An odd dinensional globally hyperbolic spacetimc can carry

t Lorcntz-Sasakian structure.

Well known cxaml)lcs are Minkowski-spacctixnc, Lorcntz spheres and Robcrtson-Walkcr

Sl)acetimc [2,8].
In another direction, physically, Corollary 2 of Theorem 3 is important for the special case

of Sasakian spacetines since is a Killing vector field. The existence of Killing vector fields in

spacetimes has often been used as the most effective symmetry. In fact, many exact solutions

of Einstein field equations have been found by assuming one or more Killing vector fields

(Kramer-Stephani-Herlt [6]).

2. REAL HYPERSURFACES OF INDEFINITE KAHLER MANIFOLDS.

Let hS/ be a real 2(n + 1)-dimensional manifold. Suppose is endowed with an almost

complex structure .] and a semi-Riemannian metric t} satisfying

[I(]X, ]Y) [I(X,Y),VX, Y E r(T). (2.1)
It follows that the index of t is an even number t, 2(r + 1). Then we say that is an

indefinite almost Hcrmitian manifold. Moreover, if on we have

(gxY)Y o, for any X,Y r(T.), (2.2)

where 7 is the Lcvi-Civita connection with respect to ., we say that is aax indefinite

Kalderian manifold (see narros-Romero [1]).
Now suppose M is an orientable non-degenerate real hypersurface of// Let N be the

normal unit vector field of M Thus by (2.1) and taking account of the orientability of M wc

see that -3VN is a vector field tangent to M. Then the equations of Gauss and Weingartcn
are given by

xY VxY + h(X,Y)N, VX, Y e r(TM), (2.3)

and

xN =-AX,VX r(TM), (2.4)

respectively, where X7 is the Levi-Civita connection with respect to the scmi-Rienannim

metric g induced by on M A is the shape operator of M and h is a symmetric tensor field

of type (0,2) on M Suppose now [l(g,g) e and by (2.1) we have g(,) e. Whc’n from

(2.3) and (2.4) we get

h(X, Y) eg(AX, Y), VX, Y e r(TM).
Hence (2.3) becomes

TxY 7xY + eg(AX, Y)N, VX, Y C r(TM). (2.5)

We now denote by {}the distribution spanned by on M and by D the complementary
orthogonal distribution to {} in TM. Certainly D is invariant by a and the distribution {}
is carried by a into the normal bundle. Thus any real hypersurface of an indefinite Kahler
manifold is an example of a CR-submanifold (see Bejancu [31). The projection morphism of

TM to D is then denoted by P Hence any vector field X on M is written as follows

X PX + rl(X), (2.6)

where r/is a 1-form on M defined by

n(x) (x,o. (2.z)

Thus we have

r/() 1. (2.8)
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Further, we define a tensor field f on M by

IX ]PX,VX r(TM). (2.9)

Then taking account that D is invariant by J we get

X -Z + v(Z). (2.10)

Moreover, by using (2.1), (2.7) and (2.9) wc get

g(.fX,.fY) g(X,Y)-ev(X)(Y),VX, Y r(TM). (9..11)

Hence, wc obtain

PROPOSITION 1. An oricntable non-degenerate real hypersurfacc of an indefinite almost

Hcrmitian manifold of index u 2r inherits an (e)-almost contact xnctric structure (.f, f, q, g).
Moreover, we have

PROPOSITION 2. The (e)-almost contact lnctric structure on M imncrscd in an indefinite

Kahlcrian manifold satisfies

and

(Vxf)Y q(Y)AX eg(AX, Y),

(Vxy)Y eg(.fAX, Y), (2.13)

COROLLARY 3. Let M be as in Proposition 2. Then the following assertions are eqlfiwtl.nt

(i) f is parallel on M
(ii) /is parallel on M

(iii) f is parallel on M
(iv) The shape operator satisfies

AX (AX)f,VX F(TM). (2.15)

We now recall from general theory of hypersurfaces in semi-Riemannian manifolds that the

Gauss and Codazzi equations are given by

g((X,Y)Z, W) g(R(X,Y)Z, W) + g(AX, Z)g(AY, W)
(2.16)

g(AY, Z)g(AX, W),

and

9((X, Y)Z,N) 9(7xA)Y -(VyA)X, Z), (2.17)

respectively, for any X, Y, Z, W E F(TM), where / and R are the curvature tensor fields

of and M respectively. On the other hand, we recall (see Barros-Romero [1]) that the

curvature tensor field of an indefixfite conplex-space form )Q(c) is given by

k(X,Y)Z {(Y,Z)X [I(X,Z)Y + [I(Y,Z)X .5(X,Z)Y+}
+ 2(X, YY)YZ }

(2.18)

fo any X, Y, Z e r(T).

for any X,Y F(TM).

PROOF. By direct calculations in (2.2) using (2.4) and (2.5) we obtain (2.12) and (2.13).
Then we replace Y in (2.12) by and obtain (2.14).

From Proposition 2 we easily obtain

.fAX, (2.14)
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Then we have

THEOREM 5. Let M be a connected real hypersurfacc with dimM > 3 of an indefinite

complex space-form/(c) satisfying one of the assertions of Corollary 3. Then c 0 ,’rod M
is a scnfi-Euclidcaa space.

PROOF. We replace Z by PZ in (2.17) and by using (2.15) and assertion (iii) of Corollary

3, wc obtain g((X,Y)PZ, N) 0. Then from (2.18), taking account of (2.6) wc get

(Pz,]g)O(x,()-(Pz,]x)(Y,() o,x,g,z e r(TM)

which implies
ce

(2.19)-(]PZ, Y) =0

Suppose now c :/: 0 and from (2.19) we get PZ 0 for any Z E F(TM), which contradicts

the hypothesis dimM > 3. Thus c 0 and by using (2.15) in (2.16) we obtain R 0 which

completes the proof.

3. (e)-SASAKIAN REAL HYPERSURFACES OF AN INDEFINITE KAHLER
MANIFOLD.

First we obtain the following theorem of characterization for (e)-Sasakian real hypersurfaccs

of indefinite Kahler manifolds.

THEOREM 6. Let M be an orientable real hypersurface of aa indefinite Kahlcr manifold

1/. Then the following assertions with respect to the (e)-almost contact metric structure

inherited by M are equivalent"

(i) M is an (e)-Sasakian manifold,

(ii) The (e)-characteristic vector field satisfies (1.10).
(iii) The shape operator satisfies

AX -eX + ( + ,(A))(X), VX F(TM). (3.1)

PROOF. (i) = (ii) was shown in section 1.

(ii) (iii). By using (1.10) and (2.14) we get

PAX -ePX, VX F(TM).

Hence by (2.6) we have

AX -ePX + I(AX), X F(TM).

From (3.2) follows

A /(A). (3.3)

Finally, taking account that A is a symmetric operator with respect to g and by using (1.4),
(2.6) and (3.3)in (3.2) we obtain (3.1).

(iii) (i). Replace AX from (3.1)in (2.12) and obtain (1.9).
In order to state the next result we recall (see O’Neill [8]), the definitions of hyperspheres

and pseudohyperbolic spaces in semi-Euclidean spaces. Consider the semi-Euclidean space

R("+x) with the indefinite Kahlerian structure (cf. Barros-Romero [1]). The pseudosphere of2s

radius r > 0 in "2 is the hyperquadric

-{ r2("+i) =r2}
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of dimcnsion (2n + 1) and index 2s. In a sinfilar way, the pseudohypcrbolic space of radius
2(n+1)

v > 0 in R2s is the hyperquadric

2,+l { 2(n+l) _r2}
of dimension (2n + 1) and index (2s 1).
We now state

THEOREM T. Let M be an ()-Sasakiaai connected real hypersurface of o2("+1). Then M
is an open set either of "-’2sq2n+l (1) or of HZn+l (1)."’28--1

2(n+1)PROOF. Since R2, is a fiat indefixfite complex space form, from (2.17) we obtain

(VxA) Y (VrA)X 0, VX, Y e F(TM) (3.4)

Next, from (3.1), we get

AX -eX, VX r(D), and (3.3). (3.5)

The,, we take X E F(D) and Y in (3.4) and by using (3.5), (3.3) and taking into account

that Vx and VqX belong to the contact distributions D we obtain

r/(A) -e (3.6)

Hence by using (3.6)in (3.1) we get

AX -X, VX r(TM). (3.7)

Therefore M is a totally umbilical hypersurface (but not totally geodesic) with normal curva-

ture k -e Hence by Lelnma 35 and Proposition 36 from O’Neill [8], p.l16, wc obtain that

M has constant curvature e and it is an open set of ’28 (I) when e I and an open set of

z,_a (1) when e -1.

Suppose now M is a totally umbilical real hypcrsurface of .,/, that is, A pI, where p is

a differentiable function and I is the identity on F(TM). Then we first state

(,,+x)THEOREM 8. A real hypersurface of Rz, is (e)-Sasakian if and only if it is totMly

umbilical and p -e.

PROOF. The first part of the assertion follows from the proof of Theorem 7. Suppose now

M is totally umbilical with p -e. Then A -e and thus r/(A) -,. Hence (3.1) is

satisfied and tiffs completes the proof.

REMARK 1. Tashiro [10] has constructed the Sasakian structure on a sphere of a Euclidean

space and Takahashi [9], by a different approach than ours, obtained the (e)-Sasakian structure
q,2n+l 2n+lH2,_1 (1)on,:s (1) and

Now suppose M is a totally umbilical real hypersurface of an indefinite complex space form

//(c). Then we get

g ((VxA)Y (VyA)X,) O, VX, Y r(D). (3.8)

On the other hand, from (2.18) we get
c9((X,Y),N) - g(X, fY), VX, Y F(D). (3.9)

Hence from (3.8) and (3.9), taking account of (2.17) we.obtain c 0, which enable us to state

PROPOSITION 3. There exist no totally umbilical real hypersurfaces in an indefinite

complex space form of non-null holomorphic sectional curvature.

Tashiro-Tachibana [11] first obtained such a result for positive definite complex space forms.
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4. COSYMPLECTIC REAL HYPERSURFACES OF INDEFINITE KAHLER
MANIFOLDS.

Suppose as in the previous section M is an orientable real hypersurface of an indefi-

nite 2(n + 1)-dimensional Kalflcr manifold b;/. Then we say that the (e)-almost contact

metric structure (f, , /, g) induced on M defines an (e)-cosymplectic structure if both the

1-form 7 and the flmdamcntM 2-form given by (1.6) are closed. M is then callcd an

(e)-cosymplcctic hypersurface. Therefore on M we have

&I(X, Y) 0, and (4.1)

d@(X, Y, Z) 0, for any X, Y, Z F(TM). (4.2)

If wc cxpress (4.2) by means of the Levi-Civita connection we obtain

1
d(X,Y,Z) - {9(X,(VzflY) + 9(Y,(Vx.f)Z) + 9(Z,(Vrf)X)} (4.3/

Then using (2.12) and (2.7) in (4.3) by direct calculations it follows that (4.2) is always satisfied

on M Hence M is an (e)-cosymplectic manifold if and only if (4.1) is satisfied. Furthermore

PROPOSITION 4. M is an (e)-eosymplectie hypersurfaee if and only if the shape operator

atisfies

Ao]’+foA=0. (4.4)

The proof follows from (4.1) taking into account that

1
&I(X,Y) - {(Vx,I)Y- (Vr/)X}, VX, Y F(TM)

and by using (2.11) and (2.13). From this proposition we infer

COROLLARY 4. Let M be an (e)-cosymplcctic real hypersurface of an indcfinitc Kahlcr

amnifold// Then we have

(i) is a principal curvature vector field,

(ii) the trajectories of are geodesics.

PROOF. Apply (4.4) to and obtain PA 0. Hence by (2.6) we get

A a, a /(A) (4.5)

which means that is a principal curvature vector. The second assertion follows from (4.4)
by using (2.14).

REMARK 2. (4.5) follows fi’om (3.1). Hence the first assertion of Corollary 4 also holds for

(e)-Sasakian real hypersurfaces.
With respect to the existence of (e)-cosymplectic real hypersurfaces immersed in complex

space forms such that their shape operators have real eigenvalues, we obtain

THEOREM 9. Let M be an (e)-cosymplectic real hypersurface of an indefinite complex
2(n+lspace form M, )(c) such that the shape operator A has only real eigenvalues. Then

(11 If c 0, then M is a semi-Euclidean space.

(2) If c t 0, then we have

(a) c 4, and M should be time-like

(b) c -4,and M should be space-like

Moreover, in the last two cases, M has at most three principal curvatures.
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PROOF. By direct calculations taking account of (1.5), (2.13), (2.14) and (4.5), we get

g(,,(VxA)Y) + g(AfAX, Y) eX(ot)l(Y) + 2g(fAX, Y), (4.6)

for any X, Y E F(TM). On the other hand, from Codazzi equation (2.17) taking account of

(2.18) we obtain
C

"Xg((VxA)Y- (VrA)X,f)= g( ,/Y) VX, Y e F(TM) (4.7)

Then taking account of (4.4) wc scc that (4.6) and (4.7) inply
C

g(X, .fY 2A]:AY) e{X(a)t(Y) Y(a)y(X)}. (4.8)

Take now X in (4.8) ad obtain

r(a) f(a)(Y), VY r(TM), (4.9)

which together with (4.4) and (4.8) imply

Cy + A=Y 0, VY r(D). (4.0)
4

As wc have seen in Corollary 4, is a principal curvature vector field of M Suppose now

Z F(TM) is another principal curvature vector field of M and A q R is the corresponding

p.rincipal curvature. Then by using (2.6) and (4.5) we get

APZ- APZ + rt(Z)(a- ) 0. (4.11)

But taking account that A is a symmetric operator with respect to g and using again (4.5)
we obtain

g(APZ,,) g(PZ, A,) ag(PZ,,) O,

which together with (4.11) imphes

APZ=APZ. (4.12)

We now replace Y from (4.10) by PZ and obtain

ce A2 (4.13)+ 0o
4

In case c 0 we then have 0 and thus AY 0 for each Y F(D) since the cigcn

distribution of A with respect to this eigenvalue is just D. Further, by using (2.6), (2.7) and

(4.5) we obtain

g(AX, Z) ea,(X)(g), VX, Z e r(TM). (4.4)

Then taking account of (4.14)in (2.16) we infer R(X,Y)Z 0 for any X,Y, Z . r(TM).
Hence we have the assertion 1 of the theorem. The assertion 2 follows from (4.13) taking into

account that the cigenvalues of A are supposed to be real.

COROLLARY 5. Let M be either a space-like cosymplectic real hypersurface of rm indefi-
nite complex space-form of positive holomorphic sectional curvature or a time-like cosymplec-
tic real hypersurface of an indefinite complex space-form of negative holomorphic sectional

curvature. Then the shape operator of M has at least two eigenvalues which are not real.

REMARK 3. In the case of cosymplectic real hypersurfaces of positive definite space forms,
important results have been obtained by Okumura [7].

Next by (4.1) we see that the distribution D is involutive on an (e)-cosymplectic real
hypersurface M Moreover, in case 2 of Theorem 9 by using (4.4) we derive that A has
eigenvalues (+1) and (-1) with the same multiplicity n. Denote by D+ and D- the eigen
distributions with respect to the above eigenvalues. Further, take X, Y q F(D+), Z q F(D)
and from (2.17) we get
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g (IX, Y] A([X, Y]), Z) O.

On the other hand, by using (4.5) and taking into account that D is involutive, we obtain

g (IX, Y] A([X, Y]), ’) O.

Hence A([A,X]) [X, Y], which says that D+ is involutivc. In a similar way, it follows that

D- is involutive too.

Suppose now that M+ is a leaf of D+ and denote h+ and .+ the second fimdamental forms

of innncrsions of M+ in M and/t/(c) respectively. Then for any X, Y E F(TM+) wc have

xY V.Y + h+(X,Y) + eg(X,Y)N,

..Y V.Y + ]t+(X,Y),

where X7+ is the Levi-Civita connection on M+. Thus we have

PROPOSITION 5. Let M+ be a leaf of D+ which is totally geodesic immersed in M

Then M+ is totally umbilical immersed in )t/(c).
Certainly such a result holds for leaves of D-too.
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