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ABSTRACT. In this paper we discuss the following class of functions

$(,3)={I(z):
"f(z) 11<31l(z) 11 D}whereO_<_<l 0<3_<1 0_<<1I-- "’g(z) + ,z E

and l(z)= z + _,
n

r’ is analytic in D= {z: zl < 1}, g(z) is a starlike function of order a. A
subordination about this class is obtained, the integral means of functions in S,(a,3) and some

extremal properties are studied.
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1. INTRODUCTION.
Let A be the class consisting of all functions l’(z)= z+ r, anzn which are analytic in

D= {z: zl <I}. Owa [1] has introduced the class (a,3). If /(z)e A and there exist,

g(z) z- lb, zn e S*(a) (0 _< a < 1) such that

g(z)-I <3 , g-+l (O_<A<l, 0<3<1, zeD), (1.1)

we say l(z) (,3). Owa [1] discused the coefficient estimates of functions in ,(a,3). In this

paper, we discuss the general case, i.e., the class S(o,,3) which is genera’ted by a function

g(O z + b. : e S*().
n=2

We first gave a subordinate about this class, then we discuss the integral means of functions in

$,X(a,3), from this we can get some extremal properties about S,X(a,3). We also discuss a subclass

of

2. A SUBORDINATION ABOUT SA(a,3).
We say that g(z) is subordinate to l(z) if there exists a function w(z) analytic in D satisfying

w(0) 0 and 1o(z)] < such that g(z) =/(w(z)) (Izl < 1). This subordination is denoted by

g(z) -</(z). About the class S,X(a,3), we have the following:

THEOREM 2.1. If I(z)eS,(a,3), i.e., there exists a function g(z) e $*(a) such that the

inequality (1.1) holds, then we have
f(z) l/3z
g(z--- "< 3.z P3,A(z)" (2.1)
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l(z) then p(0) 1. Now we divide the proof into three cases.PROOF. Let p(z) --,
CASE (a). Let A # 0, B and A are not equal to at the same time. Now the inequality (1.1)

can be written as p(z)- < [SAp(z) + 81, that is,
p(z) 12 2Rep(z) + </2A21 (z) 12 + 2/2 ARep(z) + 82. From this we can get

1-8 /(I+A)
p(z) I+/A I-/2A2 < 1-82A2"

+zBecause univalent function pC/,A(z) 1-Az maps D onto the disk

{ 1-8 8(1 +A) 8(1 +A)}w: w
I+8A I-/2A2 < 1-82A2

so p(D) C p/,A(D) and p(0) pS, A(0) I. From the principle of subordination of univalent

functions, we have p(z) ..< Ps, A(z), that is (2.1).

CASE (b). Let A=0. Now the inequality (1.1) becomes Ip(z)- 11 <
Because univalent function P8,o(Z) + z maps D onto the disk {w: w- </}, so

p(D) C pS, o(D) and p(0) p,o(0) I. Thus p(z) -< PS, o(Z)"
CASE (c). Let A=8= 1. The inequality (1.1)becomeslp(z)-1[ < Ip(z)+ 11, that is

l+zRe, p(z) > 0. Because p(0) 1, so p(z) -< p1, l(Z).
Thus for any 0 _< A _< 1,0 < < 1, we have proved (2.1).

3. THE INTEGRAL MEANS OF FUNCTIONS IN
We first state some lemmas.

LEMMA 3.1 [2]. For any 9,h e LI[ ,], the following statements are equivalent:

(a) For every convex non-decreasing function

(9()) dx < (h(x)) dz.

(b) For every (- oo, oo),

(900-t) + d _< (h()- t) + d:.

(c) 9"(o) < h*(o), (o < o < ,).

LEMMA 3.2 [2]. If 9, axe real integrable functions on [-,r], then (9+h)*(O)<9*(O)+h*(#)
(0_<0 _< =), with equality holding if and only if #,h are symmetric .decreasing arrangement

functions.

The definitions of u*(x) and the symmetric decreasing arrangement function can be found in

[2].
LEMMA 3.3 [3]. Let (t) be a convex increasing function, if 9(z) -< l(z) in D, then

(I 9(reiO) l) dO <_ (I f(reiO) l) de (0 < r < 1) (3.1)

and if u(z) is a harmonic function in D, v(z)=uGo(z)), where o(z) is analytic in D,

w(O) O, I(z) < 1, then

(+/-(io)) dO <_ (+u(jO)) dO (0 < < 1). (3.2)

When l(z) is not a constant, the equality in (3.1) holds if and only if (z)= eiOz
or #(=) to#= + ( < o).

Let

a(z) z

(1_ z)f(1-)
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it is well known that ka(z E S*(c,). For any g(z)E S*(a), we have

g(z) exp 2(1-a) log zz
=l

so we can easily obtain

g(z /%( (3.3)-4 (_z)2(_) z

THEOREM 3.1. If f(z) E SA(a,Z), Fz(z) e- iz ka (eiZz)" PZ, (eiZz), (t) is a convex non-

decreeing function on ,), then

I x (log
If(reiO) I" IF( eiO)

r dO *( !o d0 (0 < r < 1). (3.4)

For a strictly convex function #, the equMity holds only for l(z) Fz(z).
PROOF. From the definition of SA(a,), we know there exists a function #(z)e S*(a) such

that the inequMity (1.1) holds. So we have, from Threm 2.1

I() 1+p(,) A= PZ, A()
Thus

dO ( olpB,(reiO) dO, by mma a.a.

en from Lemma a.1 we have

(log v(reia) )*

On the other hand, because lz)= p(z). gz__.)), we have, by Lemma 3.2,

log I’f(rreie) < (log p(reia) )* + log g(rerie)

Using (3.3) and Lemmas 3.3 and 3.1, we can easily get

So we obtain

log < (Iog lpB, A(reiO) )* + log

By evaluation we know IoglpB,(reia) and log IIo(rei#)l are symmetric decreasing arrangement

functions, so again from Lemma 3.2 we have

(,ogJS(rerig)’ )’< (,oglpB, A(reiO).kt(;eiO) )’=(’oglF(;eie,j )"
Finally we obtain, by Lemma 3.1,

s-_.. (,o,
We can similarly prove the case of negative sign. The condition of the equality can easily be

obtained.

THEOREM 3.2. Let l(z) e SA(a,B), then for p > 0 we have

and
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(O<r<l)

where the equality holds only for f(z) 1. ko(xz p,A(xz) ix 1.

PROOF. We only need let (t)= t in Threm 3.1.

COROLLARY 3.1. If f(z) SA(o,B), ghen we have ghe following shp inequality:

r( r) r( + fir)I/(z)l (Izl =r).
( + )2( -)( +) ( )2( -)( )

(3.7)

PROOF. Take t,-th root in both sides of (3.5) and (3.6), and let p--,, we can get inequality

(3.7).
COROLLARY 3.2. If I(z) S(a,), then we have ](D) D {w: ]w] < d(a,,)}, where

d(,,) 22(x -)(x +)
cannot be replaced by any larger number.

PROOF. We can easily know f(z) is univalent in D from the definition of $X(a,B), so

Izl(-lzl) -lira inf f(z) > liradist(O, Of(D))=[z[l -[z[-l (1+ [z[)2(1-a)(l+Blz[) 22(1-a)(1+B)"

z(1 +The sharpness can bee seen from the function
(1_ z)2(l_)(l_x) S,(a,).

4. A SUBCLASS $(a,).
Let g(z)= z, we obtain a subclass S,(tr,3), we denote it by S,(3). Corresponding to (2.1),

for the class SA(), we have the following subordination:

f(z)
z " l_3Az P3,(z) (4.1)

Thus for S(3) we have

THEOREM 4.1. Let f(z) S(3),(t) is a convex non-decreasing function on (- o0,o), ,en

I r- r (:t:log [f(riO) l)dO<IX_ x (+log ll+3reiOl)do- 3AreiO (0 < r < 1). t.2)

For a strictly convex function 4,, the equality holds only or function f(z) zp3,(xz), xl
If we use subordination (4.1) and Lemma 3.3, we can obtain the following:
THEOREM 4.2. Let l(z) 8,X(3),,(t is a convex non-decreasing function on oo, o), then

() dO, (4.3)

Io# reiO dO<_ _. log + 3reiO

3reiO dO, (4.4)

(c) +/- arg
f(reiO)

dO < arg dO. (4.5)-. reiO --. AreiO

For a strictly convex function , the equality holds only for f(z)= zpz,(xz), zl 1. From (4.5)
we obtain the rotation theorem of S,().

COROLLARY 4.1. Let f(z) S,(#), then for zl r < we have the following sharp
inequality:

[,rg fz---)l < aresin
8(1 / )r
+ ,32r2
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PROOF. If we take

in (4.5), we have

arg
reiO

dO <_

t>0

t<0

arg + + fireiO 211
dO.

Take the 2n-th root in both sides of this inequality and let n--.oo, we get

maz arg +
f(rei#)

t <_ O <_ reiO
< maz arg + + reiO

arcsin
-r<O<_r 1-flArei0

This implies

Similarly, we have

arg +
f(reiO) #(1 + ,)r
rei8

< arcsin
+ A2r2

I(,) ( +)arg-
reiO <_ arcsin l+A2r2

So for any f(z) $,(), we have

1+2r2 (Izl =r<l),

where they equMity holds only for l(z)=z,(zz), rl 1. The prf of Corolly 4.1 is

complete.

From the univMence of I(z) we know ---lz # o, so we c define a single-vMued d Mytic
brch of tog ---z. t

g(z) iog lz)

n=l
then we have:

COROLLARY 4.2. Let I(z)e S(O), then we have

(+(- 1)-)17hi 25 .2 (4.6)
n=l n=l

where the inequality holds only for f(z)= zp,,(rz), zl 1.

PROOF. Let
+ Oz -. onn + (- 1)n- lonG(z) log B)z n

n=l
Take q,(t)= 2 in (4.4), we have

that is,
I 12r la(reiO) 12dO12r o2r g(reiO) 12dO <_ 2 o

0o (flnAn + 1)n lfln)2_2,,E ]An 12r2n -<
n2n=l n=l

let rl, we obtain the inequality we need to prove.

REMARK. Let X # in Corollary 4.2, that is f(z) e S1(1 ), i.e., Re(f(z)/z) > O.

Inequality (4.6) becomes

17n 12 < E 4

-1 111 (2-1)2- 2"

This inequality is sharp.
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Finally, we consider the initial coefficients of l(z) SX(/).
LEMMA 4.1. If f(0)= F’(0)= and they satisfy the following equality

(1 #)-(1 + Ba).f(z)/z F(z) (4.7)
(1-A)f(z)/z-(l+)- z

then ](z) SA(B) if and only if F(z) S1(1), i.e., Re(F(z)/z) > O.
l+zPROOF. Let (z) S(), then p(z) fz z p,(z), so p(D) C p,(D) D where- +) thusD is a disk which dieter is ( +,i,

( )(z)- ( + ) # 0.

From this we know F(z) is Mytic in D. And F(0)= 0 because of p(0)= 1. On the other hand,

the function
( )-( + )w

maps D onto the right half plane, so we ffave Re(F))>
We c prove the opsite result similly.
THEOREM 4.3. Let y(z)= z + anz" S(), then for reM number g we have the shp

estimates:

2 ( +) {4.8)

I-A (4.9)(1 + )(-(+ )), 5 +,
+ (4.10)

I+: (4.11)(1 + )(( +)-), > +.
PROOF. Because f(z)S(), then F(z) defined by (4.7) belongs to 81(1 ), i.e.,

Re(F(z)/z) >0, so there exists alytic function p(z) satisfying p(z)= 1+ pnzn, Rep(z)>0

such that
F(z)

=p(z)=l+ pnzn.

Substituting it into (4.7) and comparing the coefficients of both sides of (4.7), we have

It is well known that Pnl -< 2 (n 1,2,

2(1- 2/), / _< 0

Ip2-pp211 _< 2 0<p<l

2(2p-1) />1

z(1 + z)So we proved the results. Its easy to know the function f(z)= 1-x, ,(11 1)
z(1 +z2)attns the equMities in (4.8), (4.9) d (4.11), d the function/(z)= _, ,(] 1)attns

the inequMity in (4.10).
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