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ABSTRACT. In this paper we discuss the following class of functions

f(z) A\ @)
1|<g 9(z)

9(2) +1

,2€ D} where 0 <A<1,0< <1, 0<a<],

Syl B) = {f(2):

and f(z)=z+ E a, " is analytic in D ={z|z| <1}, g(z) is a starlike function of order a. A
subordination ‘about this class is obtained, the integral means of functions in S,(a,5) and some

extremal properties are studied.
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1. INTRODUCTION.

Let A be the class consisting of all functions f(z)=z+ § a2 which are analytic in
D={z|z| <1}. Owa [1] has introduced the class S'A(a,ﬂ)'.‘=21f f(z)e A and there exists
g(z):z-"§2;bn|z"es*(a) (0 < a < 1) such that

£(z)
@) 1|< p

f(z) \
,\g(z)+1| (0<A<1,0<B<1, z€D), (1.1
we say f(z) €35, (a,8). Owa [1] discussed the coefficient estimates of functions in s (@ 8)- In this
paper, we discuss the general case, i.e., the class §,(a, ) which is generated by a function

0
g(z)=z+ E b, 2" € §*(a).
n=2

We first gave a subordinate about this class, then we discuss the integral means of functions in
Sy(a,B), from this we can get some extremal properties about §y(a,). We also discuss a subclass
of § A B#).

2. A SUBORDINATION ABOUT S§,(a,8).

We say that g(z) is subordinate to f(z) if there exists a function w(z) analytic in D satisfying
w(0)=0 and |w(z)| <1 such that g(z) = f(w(z)) (|z| <1). This subordination is denoted by
9(2) < f(z). About the class §y(a,B), we have the following:

THEOREM 2.1. If f(z) € 5)(a,f), i-e., there exists a function g(z) € $*(a) such that the

inequality (1.1) holds, then we have
f((:; ll-‘-"ﬂﬂ,\zz = pp’/\(z). (2.1)
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PROOF. Let p(z) = %. then p(0) = 1. Now we divide the proof into three cases.
CASE (a). Let A#0, B and X are not equal to 1 at the same time. Now the inequality (1.1)
can be written as | p(z) - 1| < |BAp(z) + 8|, that is,
I p(z) |2 = 2Rep(z) + 1 < 8232 | p(2) |2 +28% ARep(z) + B2. From this we can get
1-4 B(1+ 1) B(1+X)
PO -TEm T e | < gl

Because univalent function pgA(2) = TI_LB‘-}'; maps D onto the disk

{.,,: 1-8 _ B0+X) ﬂ(1+A)}‘

-l+ﬂ/\-l_ﬂ2A? 1—ﬂ2/\2
so p(D)Cpg \(D) and p(0)=pg ,(0)=1. From the principle of subordination of univalent

w

functions, we have p(z) < g, A(2), that is (2.1).
CASE (b). Let A=0. Now the inequality (1.1) becomes|p(z)-1]| <8 .

Because univalent function Pg, o2)=1+pz maps D onto the disk {w:|w-1|<p}, so
(D) C py ,(D) and p(0) = pg ,(0) = 1. Thus p(z) < pg ,(2).
CASE (c). Let A=p=1. The inequality (1.1) becomes | p(z)-1]| < | p(z)+1], that is

Re.p(z) >0. Because p(0) =1, so p(z) < } ti =py,1(2)-
Thus for any 0 <A< 1,0 < # <1, we have proved (2.1).
3. THE INTEGRAL MEANS OF FUNCTIONS IN S)(a.5).
We first state some lemmas.
LEMMA 3.1 [2]. For any g,k € L![ - x,7], the following statements are equivalent:

(a) For every convex non-decreasing function ¢ on ( — oo, 00),

n L3
[T ewena<[" o)

(b) For every t € (~o0,00),

J' (9(z)-t) Tdz< r (h(z)—t) Tdz.
-7 -

() ¢*@) <h*®), (0<0< 7).

LEMMA 3.2 [2]. I g,h are real integrable functions on [ —x,x], then (g+ h)*(6) < g*(8) + h*(¥)
(0<6< ), with equality holding if and only if ¢,» are symmetric decreasing arrangement
functions.

The definitions of u*(z) and the symmetric decreasing arrangement function can be found in
[2].

LEMMA 3.3 [3]. Let ®(t) be a convex increasing function, if g(z) < f(z) in D, then

x . x .
[T easehnaos [ eqseehna  @<r<y (3.1)

and if u(z) is a harmonic function in D, v(z)=u(w(z)), where w(z) is analytic in D,
w(0) =0, |w(z)| <1, then

s i0 L4 i0
I_IQ(iv(re' ))dﬂsl-ﬁtb(:}:u(re' )) dé 0<r<l). (3.2)

When f(z) is not a constant, the equality in (3.1) holds if and only if w(z) = etz
or &(u) =a logu+b (a <0).
Let

—_ 2z
ka(") - (1 _ 2)2(1 _a) ’
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it is well known that k,(z) € S*(a). For any ¢(z) € $*(a), we have

g9(z) =z exp {2(1 —a) log Tfl?z' dy (z)} y

lz] =1

so we can easily obtain

9(2) 1 _ ka(2)
D (1-2%1-2) T 43

THEOREM 3.1. If f(z) € Sy(e. ), Fo(z)=e ™% k, (eizz)~pﬂy ) (¢%z), (1) is a convex non-
decreasing function on (- co,00), then

| f(re®) | | Fo(re'd)|

) do < r ®(+log —5——) do 0<r<l). (3.4)

n
l &( + log
-

For a strictly convex function @, the equality holds only for f(z) = F(z2).
PROOF. From the definition of §y(a,8), we know there exists a function g(z) € S$*(a) such
that the inequality (1.1) holds. So we have, from Theorem 2.1
f(z) 1+ 8z
PR =005 < T=px: = Ppal?)

Thus

x . k.4 .

I &+ log| p(rei®)|) db < I ®(+log|pg A(re) 1) de, by Lemma 3.3.
-7 -r )

Then from Lemma 3.1 we have
(log | p(re®) |)* < (tlog | P \(re®)1)* .

On the other hand, because ,—(z-l =p(z2)- L2 ( o) ,we have, by Lemma 3.2,

(loy M‘—'fl) < (log | p(re"®) | )* +<on M)

Using (3.3) and Lemmas 3.3 and 3.1, we can easily get

(,,,g _Ig<_">|) P (,,,, IH_")I) *

bons .
(:o_., If(re')l) 5(,0“%“,6'0),“(0 LEqlre’ )|)

Lk (re'®)]

So we obtain

By evaluation we know log| Pg A(reia)l and log—25—— are symmetric decreasing arrangement
functions, so again from Lemma 3.2 we have
i0
(1og2e1) " ¢ (,og

)‘_(, IFo('eio)I)*
=\log =
Finally we obtain, by Lemma 3.1,

10 1/
J' Q(,o,l_fsre',l)d,,sr q,(,‘,gl_&(;ﬂ)d,,
-% -

We can similarly prove the case of negative sign. The condition of the equality can easily be

i8y kqlre®)
)- -7

g, ’\(re

obtained.
THEOREM 3.2. Let f(z) € Sy(a, ), then for p >0 we have

|7 lreetFar< | " |t e b 5 e a0 O<r<1) (3.5)

and
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Jt’lf(reio)'_pdosfi'lka (re®) pg 5 (re®)|"Pa0  (@<r<1) (3.6)

where the equality holds only for f(z) =% ka(22) pg N(z2) 2| = 1.
PROOF. We only need let #(t) = P! in Theorem 3.1.
COROLLARY 3.1. If f(z) € S,(a, ), then we have the following sharp inequality:

r(l - fBr)
A +r)20 =214 gar)

r(l +pr)
(1 -n21 =91 - gar)

<@ < (lz] =r). (3.7)
PROOF. Take p-th root in both sides of (3.5) and (3.6), and let p—oo, we can get inequality
(3.7).
COROLLARY 3.2. If f(z) € S)(a,B), then we have f(D) > {w: |w| < d(a,B,))}, where
1-8

d(a,f,)) = 5l
(0 = = 5 o

cannot be replaced by any larger number.
PROOF. We can easily know f(z) is univalent in D from the definition of S(a, ), so

lz1(01-8]z]) ___1-8
D=4z 20-Da4p

dist (0,0f(D)) = lim inf|f(z)] > lim
|z| -1 [z]=1 (14 ]|z

2(1 + B2)

The sharpness can bee seen from the function ———7——-——
(-9~ prs)

4. A SUBCLASS ¢ $)(a,5).
Let g(z) = z, we obtain a subclass € §)(a,3), we denote it by S,(8). Corresponding to (2.1),
for the class §)(8), we have the following subordination:

€ 5,(af).

1‘;’—)<1‘__"g”rzz=pﬂ,x(z). (4.1)

Thus for §,(8) we have
THEOREM 4.1. Let f(z) € §,(8),9(t) is a convex non-decreasing function on ( - oo0,c0), then

. e gy (7 1+ pre?
J—”Q(:Hoy 7 dOSJ ®| tlog l—ﬁ/\rew

-7

)da (0<r<). 1.2)

For a strictly convex function &, the equality holds only for function f(z) = zp 8 Az2) Iz =1
If we use subordination (4.1) and Lemma 3.3, we can obtain the following:
THEOREM 4.2. Let f(z) € §,(8),9(t) is a convex non-decreasing function on (- o0,0), then

T (LY T of |1er®
(a) I_’rq»(——,,—) dasj_, d»( P de, (4.3)
(b) r ® |Io fi—f (] A P r o [1og 1227 1) 4o (4.4)
- I rel T -x I 1—;%\1-:‘0 ’ )
L f(re®) aw< [T 1+ Bre'd 4
(c) I . @ targ ) < J . @ |arg m de. (4.5)

For a strictly convex function &, the equality holds only for f(z) = zp g Az 2] =1 From (4.5)
we obtain the rotation theorem of S,(8).
COROLLARY 4.1. Let f(z)€S,(8), then for |z| =r<1 we have the following sharp

inequality:
f(z)

arg ——=| < arcsin

B+ A)r
1+ Xﬂ§r2 ’
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PROOF. If we take

2n
t>
&(t) = {‘ v 120
0 , t<0
in (4.5), we have
0| 2n 2n
J?r argt f(re‘ ) df < 12’ arg*t —l + Bre 7 de.
) ret o 1— BAre*
Take the 2n-th root in both sides of this inequality and let n—oo, we get
i0 0
+f("e’ )< + 1+ fre - . B+ A)r
_r:asza <r arg ﬂ—re" < _r;mszo <x arg —————l - ,e,\re"" arcsin ———ﬂl YA .
This implies
oi0
+ 'f( ) < arcsin —Tﬂ(l +A)r
14 A8%r
Similarly, we have
‘ﬂ—f( '0) < arcsin ——Q—fﬂ(l + ) .
re 14 A8%r

So for any f(z) € 5,(8), we have

|arg L(yz < arcsin E_(-SA—.:’;—Z%

where they equality holds only for f(2)=z2pg )\(z2). | 2] =1. The proof of Corollary 4.1 is

(lz] =r<1),

complete.

f(2)

From the univalence of f(z) we know == # 0, so we can define a single-valued and analytic

branch of log £, Let

9(z) = log 'f(—)'_' Z{Yn ",
then we have: "

COROLLARY 4.2. Let f(z) € §\(8), then we have

nyn _nyn-—15n2
3 1 |2<z(’“+( AT (4.6)

n=1 n?

where the inequality holds only for f(z) = zp 3, NEINEIED
PROOF. Let

—1pn
148z B+ (-1)" g
log T—5%; ="Z_l m "

G(z) =
Take &(t) = t2 in (4.4), we have
2 i 2 ;
% [ 1atre®y 1200 < L [2 160 1 200,

that is,

Z IA |22ﬂ< E(ﬂ”'\n+(_l)n—lﬂ”)2

n=1 n?

let r—1, we obtain the inequality we need to prove.
REMARK. Let A=g=11in Corollary 4.2, that is f(z) € §,(1), i-e., Re(f(2)/z) > 0.
Inequality (4.6) becomes
2 lvnl?< Z

n=1 n—1(2"-1

2

)2=2'

This inequality is sharp.
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Finally, we consider the initial coefficients of f(z) € §(8).
LEMMA 4.1. If £(0) = F/(0) = 1 and they satisfy the following equality
(1-8) -1 +BNf(z)/z _ F(z) (4.7)
(1=-BNf(z)/z-(1+8) ~
then f(z) € §,(8) if and only if F(z) € §/(1), i.e., Re(F(z)/z) > 0.
PROOF. Let f(z)€ S,(8), then p(z) =18 (, ) «11%‘[?; =pg \(2) 50 p(D)C pg y(D)=D; where
D, is a disk which diameter is (_B'X | B»\)‘ thus
(1-8Np(z)-(1+B) #0.

From this we know F(z) is analytic in D. And F(0) =0 because of p(0) =1. On the other hand,

the function
’ (1-8)-(1+)w
(1-8NMw—-(1+5)

maps D, onto the right half plane, so we have Re(F(z)/z) >0 (z € D), i.e., F'(-z')\efs;(llj.\

We can prove the opposite result similarly.

THEOREM 4.3. Let f(z)=z+”§2anz"eSA(ﬂ), then for real number yu we have the sharp
estimates:

lagl < A(1+2) (4.8)
BU+NBA-uB+AN),  wS -3 (4.9)
Ia3_l‘a%| <4 B(1+2), »6+Z:\\< <Wl+ﬂ'\' (410)

144 (4.11)
B+ BN
PROOF.  Because f(z)€Sy(8), then F(z) defined by (4.7) belongs to $,(1), ie.,
Re(F(z)/z) >0, so there exists an analytic function p(z) satisfying p(z)=1+ § Pnz". Rep(z) >0
n=1
such that

B+ A)(u(B+BA)-BA),  p>

F(z)

—p(z)—1+2 pnz
n=1
Substituting it into (4.7) and comparing the coefficients of both sides of (4.7), we have
ay= §(B+BNpy, ag—naj=§ (8+5N) { py-§ (1-AN)+u(B+50) 5} }.
It is well known that|p,} <2 (n=1,2,--.-.. )
21-2p), u<0

ng-up%ls 2 , O<p<l .

2(2/"_1) ’ #21

So we proved the results. Its easy to know the function f(z) = '—l(lq%,u I=1)

attains the equalities in (4.8), (4.9) and (4.11), and the function f(z)—%fﬁfz,(lel =1) attains
the inequality in (4.10).
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