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ABSTRACT. A new metric is introduced on the set of all sub-a-algebras of a complete probability

si)acc from fi,,ctioal a,alysis poit of view. In tltis note, we will show that the resulting metric

space is complete.
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1. INTRODUCTION.

Let (f, E, P) be a complete probability space and S(E) the set of all sub-a-algebras of E. I,

paper Wang [1 ], a t(:tric d was intro(Ittced on S(E) to investigate the convergence rate of conditioal

expectations. Some topological properties of (S(E), d) were discussed in the paper Taylor and Wang

[2], where it have I)een shown that (5’(E),d) is compact if and only if E is purely atomic, (S(E),d)

is connected if and only il’ has at most one atom. Moreover the important subset consisting of all

continuous sul)-cr-algcl)ras was slown to be closed and nowhere dense. Some of these results were

also adapted to the theory of von Nuemann algebra.

In this note, we show that (,_q’(E),d) is complete.

2. NOTATIONS AND PRELIMINARIES.

For any Eo C S(E), L(E0) L(f, Eo, P) is a closed subspace of L(ft, E,P) in a natural

way, and also a subspace of L2(f,E, P) since (f,E, P) is a probability space. Define L(o)

{.f L(o): Ilfll < a ). This is the unit ball in L(E0), and is closed in L2(ft, E,P).

For , E S(E), define

d(E,,E2) max{ su 1) inf IIf-gll2, sup inf
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It is easy to check that d defines a rnetric on

For any E0 E S(E), let es (lenoc the orthogonal projection of L(f,E,P) onto L(fl, P..o,P).

Let E denote the restriction of e to L(f/, E, P). It is well known that E’ and e* are

restrictions of the conditional expectation mapping of L(f, E, P) onto Ll(f, E0, P).
The following results were obtained in Wang [1].
THEOREM 1. I.et E,,E2 E ._q(E), then s,,plerF()IIEz’(f) Ez,(f)ll < 2/d(E,, E).
THEOREM 2. Let E,, ,t 1,2,... be an arbitrary sequence in S(E), then EZ"(f) L’-converge

to EZ(f) uniformly on L’(E) for all < p < oo if and only if lhn,_..,, d(E,, Eoo) 0.

For any E, E2 S(E), let

d’(E,,Ez)= sup inf P(AAB)Vsup inf P(AAB)
,4EEz BE BEE AEt

This metric was used by Boylan [3] to investigate the convergence rate of conditional expectations.

lie also showed that (S(E), d’) is complete.

In Taylor and Wang [2], we showed that

d’(S,, ) d(,, E2) 22d’(E,, E)(1 d’(E,, E))

for any E,E2 S(E). A counterexample was also provided to argue that the right hand inequality

cannot be improved to a form d < kd’ for some positive constant k.

From this inequality and Boylan’s result, (S(E),d) is complete. In this note, we give a direct

and cleat" proof of tltis fact.

3. COMPLETENESS OF (S(E),d)
To prove the main theorem, we need a lemma.

LEMMA Let f,, f,g,,g be in L(E). If ]]f fll2 o and ]lg, gllz o as n o, t/ten

IIA V 9. f v 911 --’ 0 as n oo.

The proof follows from the inequalities

II.f. v g,, f v gll -< IIg. gll, IIA v g y v gll -< IIA Yll.

THEOREM 3. The metric space (S(:E), d) is complete.

PROOF: Let Z,,n 1,2,... be a sequence in S’(:E) such that lim,,,,,_,oo d(:E,,:E,) 0. By

theorem 1, lim...... IIE(f)- E(f)II 0 for any f L(:E). For any f L(E), (7)
L(E). Since L(E)is a closed subset of L(E), there is a limit function foo L() such that

lim,-,oo ES"(f) foo and foo is unique up to a set of probability zero.

Define an operator T on L(:E) by

T(f) foo lim ES’(f), f L(E)

and define M (T(f)’f . L(E)}. Then
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1. T- Lc(E) L(E) is linear, constant-preserving and positive;

2. T is a Sidfik operator, since

T(f) V T(g) l,,i,_.noo Er’"(T(f)) V 2i_rnoo Er"(T(g)) by 3

li’_noo Er"(T(f))V Er"(T(g)) by lemma

,!i_rn Er"(T(f) V T(g))

T(T(f) VT(g));
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3. It! {f’f T(f),f c= L(E)}, so M is closed and contains constants;

4. /ll is a Banach -lattice. Since L(E) is a Banach lattice, for any f and 9 in M, f V 9

T(f) VT(g)= T(T(f)V T(g))15 M;

5. let .f,, n 1,2,... be an increasing sequence of positive functions in M converging to f t5

L(E), then since If- f-I -< [f- fl for any n and ]f- fl is integrable, by Lebesgue

Dominated Convergence Theorem, lim,,_,oo fn If .f.Idp 0, so lim,,...oo Ill f-ll 0. But

Ilf- T(f)[[2 < [If- AII + [[T(f f,)[[: < 211f- f[[, hence f T(f) 15 M.

By theorem 2.2.5 or Rao [4],/1! l,(Eo) for some sub-a-algebra Eo 15 S(E), so T(L’’(E))

L(0).

For any n, rn and f ( L’(En), by theorem 1,

IIf- E"(f)ll --IIE"(f)- E"(f)ll < 2Ytd(-,
For any e > 0, choose N be such that n,m > N implies that d(E,,,E.) < e/6. For n > N and

/ Li(.),

_< 21//6 < e

For these e and N and g 15 L(o), for n >_ N,

Ila E"(a)ll liT(a) E"(a)ll i_m IIE() E’(a)ll <

Thus, lim,,... d(,,, E0 0.

Now, this implies by theorem 2 that Er’(f) lim,_=Er’(f) T(I) in L-norm for all

f 15 L’(:E), thus Er(f)= T(f) for all f 15 L’(:E), that is T Em’.
Therefore, any Cauchy sequence {E, n 1,2,...} in S() has a limit :Eo 15 S(Z), and (S(I2), d)

is complete.
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