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ABSTRACT. There is a one-to-one order preserving correspondence between totally disconnected

compactifications of a topological space and certain Boolean algebras of open closed subsets on

it.
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1. INTRODUCTION.
One of the interesting consequences of Gelfand theory is the correspondence between com-

pactification of a completely regular space S and certain subalgebras of the algebra C(S) of all

bounded continuous complex-valued functions on it. This correspondence is described in 43 of

Gel’farad et al. [1]. Theorem 1 in 43 of Gel’fand et al. [1] states that each Hausdorff compa,’tifi-
cation of S corresponds to a subalgebra A of C(S) which is closed under involution and is regular
in the sense that members of A separate points from closed subsets..

In this paper we shall show that there is a similar consequence of Stone theory about Boolean

rings. We shall prove that there is one-to-one order preserving correspondence between certain

compactifications of a totally disconnected space S and certain Boolean rings of open-closed
subsets of the space S. (In fact, we would be justified in referring to those Boolean rings as

regular Boolean rings (members of these rings also separate points and closed sets)). There is an

interesting analogy between consequences of Gelfand and Stone’s theories.

2. MAIN RESULT.
Let S be a totally disconnected space (see Simmons [6, p 149]). This means that for any

s, E S there is an open closed subset of S containing s but excluding (Note that S is a Haus-
dorf space). (Note also that our definition differs somewhat from definitions given in Johnstone

[2], Koppelberg [4] and Monk and Bonnet [5].) Let :(S) be the space of all open closed subsets

of S. Then L:(S) is a Boolean algebra (Simmons [6, p 345]) under standard set theoretic oper-

ations (as well as a Boolean ring under certain algebraic operations (symmetric differences and

intersections)).
The main result deals with those compactifications of S that are totally disconnected. Ac-
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cording to Kelley [3, p 151] a compactification of S is a compact space Q D S such that S is

dense in Q and the topology of S is the (relative) topology induced by Q.
THEOREM 1. For each totally disconnected compactification Q of S there exists a Boolean

subring L(Q) of (S) with the following properties:

(1) L(Q) is isomorphic to the Boolean ring :(Q) of all open closed subsets of Q.
(2) For each open subset O of S and s E O there exists O’ E L(Q) such that s O’ C O.
Conversely, for each Boolean subring L of :(S) with property (2) there exists a totally

disconnected compactification Q(L) such that L is isomorphic to (Q(L)).
PROOF. Let Q be a totally disconnected compactification of S. Consider the family

L(Q)= {G N S" G is an open-closed subset of Q},

L(Q) {G t3 S G c= (Q)}. (2.2)

Then L(Q)is a Boolean algebra isomorphic to (Q) (under the correspondence a N S a)(the
fact that the correspondence "G f3,5’ G" is one-to-one follows from the fact that each G (Q)
is both open and closed, and S is dense). Using Theorem C on page 150 of Simmons [6], it is

easy to verify that L(Q) satisfies property (2).
Now let L be any Boolean subalgebra of (S) satisfying (2). Let Q(L) be the set of all

non-zero homomorphisms q of L into Z2 {0, 1} (the smallest Boolean ring (which is also a

field)). Then Q is totally disconnected compact space with respect to the topology whose base B
can be described as follows (Simmons [6, p 351]): for each non-empty G L consider the set

Ue {q Q q(G)= 1}, (2.3)

and then take fl to be the family of all sets of the form Ua,

{Ua" G C L,G }. (2.4)

One can identify each s S with the member q, of Q defined by

q,(a) a(s), a c L (2.5)

(where e is the characteristic function of G" e(s) 1 if s e G and a(s) 0 if s G).
Now note that the map " s q, is one-to-one (because of property (2)) and continuous (since
-l(Ua) G). Property (2) implies that maps open sets into open sets (every open set in S
is a union of members G of L and (G) Ua t3 (S)).

To show that 5’ (or rather (S)) is dense in Q, consider any q0 Q and any open subset O
of Q with q0 Q. Take G E L, G :/: , such that q0 Ue C O. Then Ue contains plenty of

members of the form q with s q S. This means that S is dense in Q.
Thus Q is a compactification of S. It is not difficult to show that L is isomorphic to (Q)

(in fact, this is the consequence of Stone Representation Theorem on p. 351 in Simmons [6]).
Now let " be the class of all totally disconnected compactifications of S and let E be the

class of all Boolean subalgebras of (S) satisfying condition (2) of Theorem 1 above. Define the

partial order "<" on " as it is done on page 151 of Kelley [3]: if Q1, Q2 then Q < Q2
if there exists a continuous mapping T Q2 Q such that T, s for all s S. Order E by
inclusion: if L, L2 E (S), then L1 _< L2 if L1 is a Boolean subalgebra of L2.

THEOREM 2. The mappings Q L(Q) and L Q(L) considered in Theorem 1 above are

one-to-one and preserve partial orders of 2" and .
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PROOF. First ssertion follows fro,n the facts that Q is homeomorphic to Q(L(Q)) (follows
from Theorem 2, p 380 of Stone [7]) and that L is isomorphic to L(Q(L)). (Stone Representation
Theorem on page 351 of Simmons [6]).

Let us show that the correspondence L Q(L) preserves the partial order. Let T Q2 Q
be a continuous map of a compactification Q2 into a eompactification Q1 (Q, Q2 6 .T, Q <_ Q2)
such that T, s for all s 6 S (for simplicity we identify members s of 5’ with their corresponding
members qs in Qa and Q2). For 1, 2 let

L, {a cl S: G e (Q,)}. (2.6)

If O L, then O G N S for some G (Q). Let

O’ T-(O) T-(G S) T-(G) S. (2.7)

Then O’ is both open and closed hence belongs to L. But members of S are invariant under T
and the only member of S that maps into a fixed s 6 S is itself. This simply means that O’ O.
This proves that L, C L i.e. L, _< L.

Now assume that L C L where L, {G S: G 6 (Q,)}, 1, 2, where Q, Q are as

above. Then each q 6 Q can be considered as a homomorphism of L into Z2 {0, 1 }. Consider
its restriction T to L. Clearly Tq 6 Q. Let us show that the map T Q ---, Qa is continuous.

Let q0 6 Q and let G 6 L be such that

Tqo V {q Q,, q(V) }.

Then Tqo(G 1 and G 6 L2 also. Consider

(2.8)

VG {q 6 Q q(G) 1}. (2.9)

Then T(Va) C Ua and so T is continuous on q0. It is also easy to see that T, s for each s 6 S.
3. AN EXAMPLE.

It is clear that total disconnectedness of the space S above does not by itself guarantee
existence of Boolean algebras of open closed subsets of S that satisfy condition (2) (in Theorem

1) above. Because of this we give an example of a space which has p!enty of Boolean algebras
with property (2).

In this paper the term "open interval" means any set of the form

(a, b) {x: a < x < b}, (3.1)

(, )= {: < }, (3.2)

(-o, d)= {z z < d}. (3.3)

End points (of an interval) are numbers a, b, c, d (quantities c and -c are excluded from our

considerations).
EXAMPLE. Let S be the set of all transcendental (real) numbers (those real numbers which

are not roots of polynomials with integral coefficiants). Then S is totally disconnected with respect
to the topology induced by the standard topology of real numbers (the topology, generated by
open intervals).

Now let L be the family of these subsets of S which are finite unions of mutually disjoint
open intervals with rational end-points and let L2 be the family of those subsets of S which are
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finite unions of disjoint open intervals whose end-points are algebraic numbers. It is easy to see

that both LI and L2 are Boolean algebras of open closed sets, which satisfy condition (2) of
Theorem 1 above. Note also that L1 C L2.

The reader should have no difficulties in constructing other examples. For instance, in the
above example, one could replace transcendental numbers by irrationals, the algebraic numbers
by rationals and rationals by those of the form p2-" (p and n are integers, n > 0).
4. REMARK.

The author feels that it is appropriate to make the following remark concerning completely
regular spaces mentioned at the beginning of the paper. As it was already stated above, there
is a one-to-one correspondence Q B between Hausdorff compactifications Q of a completely
regular spae S and Banach subalgebras B of C(S) which are closed under conjugation and
which separate points and closed sets in S. It turns out that this correspondence preserves also
the partial order. In other words, if QI and Q2 are two Hausdorff compactifications of S such
that Q1 < Q2 (as defined above) and B1, B2 are corresponding regular Banach algebras, then

B1 C_ B. Proof of this fact is a straightforward modification of the proof of Theorem 2 above.
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