A CHARACTERIZATION OF FUZZY NEIGHBORHOOD COMMUTATIVE DIVISION RINGS

T.M.G. AHSANULLAH and FAWZI AL-THUKAIR

Department of Mathematics, College of Science King Saud University P.O. Box 2455, Riyadh-11451 Kingdom of Saudi Arabia

(Received July 7, 1992 and in revised form November 20, 1992)

ABSTRACT. We give a characterization of fuzzy neighborhood commutative division ring; and present an alternative formulation of boundedness introduced in fuzzy neighborhood rings. The notion of β -restricted fuzzy set is considered.

KEY WORDS AND PHRASES. Fuzzy neighborhood system; fuzzy neighborhood commutative division ring (FNCDR); bounded fuzzy set; β -restricted fuzzy set. 1992 AMS SUBJECT CLASSIFICATION CODES. Primary, 54A40; Secondary, 16W80.

1. INTRODUCTION.

The notions of fuzzy neighborhood division ring and fuzzy neighborhood commutative division ring are announced in [1] without producing any characterization theorem on the topics. In this article, our aim is to provide with such a characterization theorem.

Fuzzy neighborhood rings are studied in [2] where the concept of bounded fuzzy set is introduced. We give here an alternative equivalent formulation of boundedness in case of commutative division rings. Finally, we propose a notion of β -restricted fuzzy set where $0 < \beta \leq 1$, an analouge of restricted set in topological commutative division rings.

2. PRELIMINARIES.

Like recent works, for instance ([1], [2], [3], [4] and [5]) the key item of this article is the notion of fuzzy neighborhood system originated by R. Lowen [6]. For our convenience, we quote below a few known definitions and useful results.

Throughout the text, we consider the triplet $(D, +, \cdot)$ either a ring, division ring or commutative division ring (whichever we require), while $D^* := D \setminus \{0\}$ stands for multiplicative group of nonzero elements of commutative division ring D and D^+ is the additive group of D.

As usual, I_0 :=]0,1], and I:= [0,1] the unit interval. \Box denotes the completion of the proof. For any fuzzy set $\mu \in I^D(=\{\mu: D \to I\})\mu^{\sim}$ is defined as

$$\mu^{\sim}(x):=\mu(x^{-1})\;\forall x\in D^*$$

If $x \in D$ then,

$$x \oplus \mu(y) := 1_{\{x\}} \oplus \mu(y) = \mu(y-x) \quad \forall y \in D$$

where $1_{\{x\}}$ denotes the characteristic function of the singleton set $\{x\}$, while for any $\mu, \nu_1, \nu_2 \epsilon I^D$ and $x \epsilon D^*$ $x \odot \mu, \nu_1 \oplus \nu_2$ and $\nu_1 \odot \nu_2$ are defined successively,

for all $y \in D$.

Also, we define μ/ν as

 ν/ν : = $\mu \odot \nu \sim$

and so $1/(1 \oplus \nu)$ is written as

 $1/(1 \oplus \nu)(x) := (1 \oplus \nu)^{\sim} (x) := (1 \oplus \nu)(x^{-1}) \quad \forall x \in D^*.$

We call μ is symmetric if and only if

 $\mu = \sim \mu$, where $\sim \mu(x) = \mu(-x) \forall x \in D$.

The constant fuzzy set of D with value $\delta \epsilon I$ is given by the symbol $\underline{\delta} \ (\epsilon I^D)$.

We recall the so-called saturation operator [6,7] which is defined on a prefilter base $F \subset I^D$ by

$$\widetilde{F} = \{ \nu \in I^{D} : \forall \delta \in I_{0} \exists \nu_{\delta} \in F \ni \nu_{\delta} - \delta \leq \nu \}.$$

If $\Sigma := (\Sigma(x))_{x \in D}$ is a fuzzy neighborhood system on a set D then $t(\Sigma)$ is the fuzzy neighborhood topology on D, and the pair $(D, t(\Sigma))$ is known as fuzzy neighborhood space [6].

PROPOSITION 2.1. If $(D, t(\Sigma))$ and $(D', t(\Sigma'))$ are fuzzy neighborhood spaces and $f: D \rightarrow D'$, then f is continuous at $x \in D \Leftrightarrow \forall \mu' \in \Sigma'(f(x))$ and $\forall \delta \in I_0 \exists \nu \in \Sigma(x)$ such that $\nu - \underline{\delta} \leq f^{-1}(\nu')$.

DEFINITION 2.2. Let $(D, +, \cdot)$ be a ring and Σ a fuzzy neighborhood system on D. Then the quadruple $(D, +, \cdot, t(\Sigma))$ is said to be a fuzzy neighborhood ring if and only if the following are satisfied:

(FR1) The mapping $h: (D \times D, t(\Sigma) \times t(\Sigma)) \to (D, t(\Sigma)), (x, y) \mapsto x + y$ is continuous.

(FR2) The mapping $k: (D, t(\Sigma)) \to (D, t(\Sigma)), x \mapsto -x$ is continuous.

(FR3) The mapping $m: (D \times D, t(\Sigma) \times t(\Sigma)) \to (D, t(\Sigma)), (x, y) \mapsto xy$ is continuous.

PROPOSITION 2.3. Let $(D, +, \cdot, t(\Sigma))$ be a fuzzy neighborhood ring and $x \in D$.

Then

(a) The left homothety $\mathcal{L}_x:(D,t(\Sigma)) \to (D,t(\Sigma)) \ y \mapsto xy$ (resp. right homothety $\mathfrak{R}_x:(D,t(\Sigma)) \to (D,t(\Sigma)), y \mapsto yx$) is continuous. If x is a unit element of D then each homothety is a homeomorphism.

(b) The translation T_x : $(D, t(\Sigma)) \to (D, t(\Sigma)), y \mapsto y + x$, and the inversion k are homeomorphisms.

- (c) $\nu \epsilon \Sigma(0) \Leftrightarrow x \oplus \nu \epsilon \Sigma(x)$, i.e., $T_x(\nu) \epsilon \Sigma(x)$.
- (d) $\nu \epsilon \Sigma(x) \Leftrightarrow -x \oplus \nu \epsilon \Sigma(0)$, i.e., $T_{-x}(\nu) \epsilon \Sigma(0)$.

DEFINITION 2.4. Let $(D, +, \cdot)$ be a division ring, and Σ a fuzzy neighborhood system on D. Then the quadruple $(D, +, \cdot, t(\Sigma))$ is said to be a fuzzy neighborhood division ring if and only if the following are true:

710

(FD1) $(D, +, \cdot, t(\Sigma))$ is a fuzzy neighborhood ring.

(FD2) The mapping $r:(D^*, t(\Sigma_{|D^*})) \to (D^*, t(\Sigma_{|D^*})), x \mapsto x^{-1}$ is continuous, where $\Sigma_{|D^*}$ is the fuzzy neighborhood system on D^* induced by D.

THEOREM 2.5. Let $(D, +, \cdot)$ be a ring and Σ a fuzzy neighborhood system on D. Then the quadruple $(D, +, \cdot, t(\Sigma))$ is a fuzzy neighborhood ring if and only if the following are satisfied:

- (1) $\forall x \in D: \Sigma(x) = \{T_x(\nu): \nu \in \Sigma(0)\}$
- (2) $\forall x_0 \in D, \forall \mu \in \Sigma(0), \forall \delta \in I_0 \exists \nu \in \Sigma(0) \ni x_0 \odot \nu \le \mu + \underline{\delta}$, and $\nu \odot x_0 \le \mu + \delta$, i.e., the mapping $y \rightarrow x_0 y$ and $y \rightarrow y x_0$ are continuous at 0.
- (3) $\forall \mu \epsilon \Sigma(0), \forall \delta \epsilon I_0 \exists \nu \epsilon \Sigma(0) \ni \nu \oplus \nu \leq \mu + \underline{\delta}$, i.e., the mapping $(x, y) \mapsto x + y$ is continuous at (0, 0).
- (4) $\forall \mu \epsilon \Sigma(0), \forall \delta \epsilon I_0 \exists \nu \epsilon \Sigma(0) \ni \nu \leq \sim \mu + \underline{\delta}$, i.e., the mapping $x \mapsto -x$ is continuous at 0.
- (5) $\forall \mu \epsilon \Sigma(0), \ \forall \delta \epsilon I_0 \ \exists \nu \epsilon \Sigma(0) \ni \nu \odot \nu \leq \mu + \underline{\delta}$, i.e., the mapping $(x, y) \mapsto xy$ is continuous at (0, 0).

3. CHARACTERIZATION OF FNCDR AND SOME OTHER RESULTS.

The following is a characterization of fuzzy neighborhood commutative division ring. We consider $\Sigma(0)$ to be symmetric fuzzy neighborhoods of zero.

THEOREM 3.1. Let $(D, +, \cdot)$ be a commutative division ring and $(D, +, \cdot, t(\Sigma))$ a fuzzy neighborhood ring. Then the quadruple $(D, +, \cdot, t(\Sigma))$ is a fuzzy neighborhood commutative division ring if and only if the following are fulfilled:

- (i) $\forall x \in D: \Sigma(x) = \{T_x(\nu) = x \oplus \nu; \nu \in \Sigma(0)\}.$
- (ii) $\forall \mu \epsilon \Sigma(0), \forall x \epsilon D, \forall \delta \epsilon I_0 \exists \nu \epsilon \Sigma(0) \ni x \odot \nu \leq \mu + \underline{\delta}$; i.e., $y \mapsto yx$ is continuous at 0.
- (iii) $\forall \mu \epsilon \Sigma(0), \forall \delta \epsilon I_0 \exists \nu \epsilon \Sigma(0) \ni \nu \oplus \nu \leq \mu + \underline{\delta}$, i.e., $(x, y) \mapsto x + y$ is continuous at (0, 0).
- (iv) $\forall \mu \in \Sigma(0), \forall \delta \in I_0 \exists \nu \in \Sigma(0) \ni \nu \odot \nu \le \mu + \underline{\delta}, i.e., (x, y) \mapsto xy \text{ is continuous at } (0, 0).$
- (v) $\forall \mu \epsilon \Sigma(0), \forall \delta \epsilon I_0 \exists \nu \epsilon \Sigma(0) \ni (1 \oplus \nu)^{\sim} \leq (1 \oplus \mu) + \underline{\delta}$, i.e., the inversion $x \mapsto x^{-1}$ $(x \neq 0)$ is continuous at 1.

PROOF. If $(D, +, \cdot, t(\Sigma))$ is a fuzzy neighborhood commutative division ring, then the conditions (i) - (iv) are immediate from Theorem 2.5. We check condition (v).

Let $\mu \in \Sigma(0)$ and $\delta \epsilon I_0$; then $1 \oplus \mu \epsilon \Sigma(r(1))$. Since $r: x \mapsto x^{-1}$ is continuous at 1, we can find $\nu \in \Sigma(0)$ such that $1 \oplus \nu \epsilon \Sigma(1)$ and $r(1 \oplus \nu) \leq (1 \oplus \mu) + \underline{\delta}$.

But
$$r(1 \oplus \nu) \leq (1 \oplus \nu)^{\sim}$$
, so $(1 \oplus \nu)^{\sim} \leq (1 \oplus \mu) + \underline{\delta}$.

Conversely, if the conditions (i) - (v) are fulfilled then only we need to prove that the inversion $r: x \mapsto x^{-1}$ is continuous, i.e., we show that

$$\forall \mu \epsilon \Sigma(0), \ \forall x \epsilon D, \ \forall \ \delta \epsilon I_0 \ \exists \nu \epsilon \Sigma(0) \ni$$

$$(x \oplus \nu)^{\sim} \leq (x^{\sim} \oplus \mu) + \delta.$$
(*)

Let $x \in D^*$, $\mu \in \Sigma(0)$ and $\delta \in I_0$. Then in view of (ii), there is a $\mu_1 \in \Sigma(0)$ such that

$$\mu_1 \odot x \sim \leq \mu + \delta/\underline{3} \tag{3.1}$$

Now due to (v), corresponding to μ_1 we can find $\nu_1 \epsilon \Sigma(0)$ such that

$$(1 \oplus \nu_1)^{\sim} \leq (1 \oplus \mu_1) + \delta/\underline{3} . \tag{3.2}$$

Then by (ii), there exists a $\nu \epsilon \Sigma(0)$ such that

$$(\mathbf{x} \sim \odot \mathbf{\nu}) \le \mathbf{\nu}_1 + \delta/\underline{3} . \tag{3.3}$$

Now

$$(1 \oplus (\boldsymbol{x} \frown \boldsymbol{\wp} \boldsymbol{\nu}))^{\sim} \leq (1 \oplus \boldsymbol{\nu}_{1})^{\sim} + \delta/\underline{3} \text{ (from (3.3))}$$
$$\leq (1 \oplus \boldsymbol{\mu}_{1}) + 2\delta/\underline{3} \text{ (from (3.2))}$$
$$\leq (1 \oplus (\boldsymbol{x} \odot \boldsymbol{\mu})) + (2\delta/\underline{3}) + (\delta/\underline{3}) \text{ (from (3.1))}.$$

But then with simplification, we have

$$(x \oplus \nu)^{\sim} = x^{\sim} \odot (1 \oplus (x^{\sim} \odot \nu))^{\sim} \leq (x^{\sim} \oplus \mu) + \underline{\delta}, \qquad \Box$$

which proves (*).

PROPOSITION 3.2. Let $(D, +, \cdot, t(\Sigma))$ be a fuzzy neighborhood commutative division ring. If the conditions (i) - (v) of Theorem 3.1 are satisfied then the following inequality hold good.

$$/ \mu \epsilon \Sigma(0), \ \forall \delta \epsilon I_0 \ \exists \nu \epsilon \Sigma(0) \ni \nu / (1 \oplus \nu) \le \mu + \underline{\delta} \ .$$

PROOF. Suppose that the condition (i) - (v) hold good. Let $\mu \epsilon \Sigma(0)$ and $\delta \epsilon I_0$. Then there are μ_1 , $\mu_2 \epsilon \Sigma(0)$ such that

$$\mu_1 \oplus \mu_1 \le \mu + \delta/\underline{3}; \ \mu_2 \le \mu_1;$$

and

$$\mu_2 \odot \mu_2 \le \mu_1 + \delta/\underline{3} . \tag{3.4}$$

By (v), for every $\mu_2 \epsilon \Sigma(0) \exists \nu \epsilon \Sigma(0), \nu \leq \mu_2$ such that

$$(1 \oplus \nu)^{\sim} \leq (1 \oplus \mu_2) + \delta/\underline{3} . \tag{3.5}$$

0

Then we have

$$\nu/(1 \oplus \nu) = \nu \odot (1 \oplus \nu) \sim (\text{by definition})$$

$$\leq \nu \odot (1 \oplus \mu_2) + \delta/\underline{3} \leq (\nu \odot 1) \oplus (\nu \odot \mu_2) + \delta/\underline{3} \quad (\text{by } (3.5))$$

$$\leq \mu_2 \oplus (\mu_2 \odot \mu_2) + \delta/\underline{3}$$

$$\leq (\mu_2 \oplus \mu_1) + 2\delta/\underline{3}$$

$$\leq (\mu_1 \oplus \mu_1) + 2\delta/\underline{3}$$

$$\leq \mu + \underline{\delta}$$

$$\Rightarrow \nu/(1 \oplus \nu) \leq \mu + \underline{\delta} .$$

THEOREM 3.3. Let $(D, +, \cdot)$ be a commutative division ring equipped with a fuzzy neighborhood topology $t(\Sigma)$. If $(D, +, t(\Sigma))$ is a fuzzy neighborhood group with respect to addition $h: (D \times D, t(\Sigma) \times t(\Sigma)) \rightarrow (D, t(\Sigma), (x, y) \mapsto x + y$ and $(D^*, \cdot, t(\Sigma))$ is a fuzzy neighborhood group with respect to multiplication $m: (D^* \times D^*, t(\Sigma) \times t(\Sigma)) \rightarrow (D^*, t(\Sigma)), (x, y) \mapsto xy$, then $(D, +, \cdot, t(\Sigma))$ is a fuzzy neighborhood commutative division ring.

PROOF. As the inversion, the addition and subtraction, i.e.,

$$r: (D^*, t(\Sigma)) \to (D^*, t(\Sigma)), x \mapsto x^{-1},$$

$$h: (D \times D, t(\Sigma) \times t(\Sigma)) \to (D, t(\Sigma)), (x, y) \mapsto x + y;$$

$$h': (D \times D, t(\Sigma) \times t(\Sigma)) \to (D, t(\Sigma)), (x, y) \mapsto x - y$$

are continuous, it is sufficient to show that the multiplication $m:(D \times D, t(\Sigma) \times t(\Sigma)) \to (D, t(\Sigma)),$ $(x, y) \to xy$ is continuous.

Let $\Sigma(0)$ be symmetric fuzzy neighborhoods of zero in the additive group D^+ of D, and

$$\Sigma(\boldsymbol{x}):=\left\{\boldsymbol{x}\oplus\boldsymbol{\nu}:\boldsymbol{\nu}\in\Sigma(\boldsymbol{0})\right\}^{\sim}.$$

We show that

$$\forall x \in D, \forall y \in D, \forall \mu \in \Sigma(0), \forall \delta \in I_0 \exists \nu \in \Sigma(0) \ni$$

$$(\boldsymbol{\nu} \oplus \boldsymbol{x}) \odot (\boldsymbol{\nu} \oplus \boldsymbol{y}) - \underline{\delta} \leq \boldsymbol{\mu} \oplus \boldsymbol{x} \boldsymbol{y}.$$

Condition (**) is satisfied for all $z \in D^*$, $y \in D^*$. Indeed,

$$\begin{aligned} \forall x, y \in D^*, \ \forall \mu_{xy} \in \Sigma(xy), \ \forall \ \delta \epsilon I_0 \ \exists \theta_x \in \Sigma(x) \ \exists \theta_y \in \Sigma(y) \ni \\ \theta_x \odot \theta_y - \underline{\delta} \le \mu_{xy}. \end{aligned}$$

$$(***)$$

We let μ_{xy} : = $\mu \oplus xy$ with $\mu \in \Sigma(0)$,

$$\theta_{x} := x \oplus \theta \epsilon \Sigma(x) \ \theta_{y} := y \oplus \theta' \epsilon \Sigma(y) \ \text{with} \ \theta, \theta' \epsilon \Sigma(0).$$

Put $\nu: = \theta \wedge \theta'$. Then we have

$$(\nu \oplus x) \odot (\nu \oplus y) - \underline{\delta} \leq (\theta \oplus x) \odot (\theta' \oplus x) - \underline{\delta}$$
$$\leq \theta_x \odot \theta_y - \underline{\delta} \leq \mu_{xy} = \mu \oplus xy,$$

as desired.

It remains to show that if xy = 0, then (**) is satisfied. First, let x = y = 0; suppose $\mu \epsilon \Sigma(0)$ and $\delta \epsilon I_0$; then by Proposition 2.3(c), $1 \oplus \mu \epsilon \Sigma(1)$.

There exists $\theta \in \Sigma(0)$ such that

$$\theta \oplus \theta \oplus \theta \le \mu + \delta/2 . \tag{3.6}$$

Consequently, as multiplication $m:(x,y)\mapsto xy$ is continuous at (1,1), there exists $\nu_1 \in \Sigma(1)$ such that

$$\nu_1 \odot \nu_1 \le (1 \oplus \theta) + \delta/\underline{2} . \tag{3.7}$$

Then in view of Proposition 2.3(d), $-1 \oplus \nu_1 \epsilon \Sigma(0)$. Let us put

$$\nu:=-1\oplus\nu_1 \text{ and } \nu:=\nu\wedge\theta$$

then $\nu \epsilon \Sigma(0)$ and hence,

$$\nu \odot \nu = (-1 \oplus \nu_1) \odot (-1 \oplus \nu_1)$$

$$\leq 1 \oplus ((-1) \odot \nu_1) \oplus (\nu_1 \odot (-1)) \oplus (\nu_1 \odot \nu_1)$$

$$\leq (1 \oplus (\sim \nu_1)) \oplus (\sim \nu_1) \oplus (1 \oplus \theta) + \delta/\underline{2}$$

$$\leq \theta \oplus \theta \oplus \theta + \delta/\underline{2} \leq \mu + \underline{\delta}$$

which proves that

$$\forall \mu \epsilon \Sigma(0), \ \forall \delta \epsilon I_0 \exists \nu \epsilon \Sigma(0) \ni \nu \odot \nu \leq \mu + \delta.$$

(**)

Next, let $x \neq 0 = y$. Since the multiplication $m:(x, y) \mapsto xy$ is continuous at (1, x), then (***) implies that

$$\forall \mu_{x} \epsilon \Sigma(x), \ \forall \delta \epsilon I_{0} \ \exists \ \nu_{1} \epsilon \Sigma(1) \ \exists \nu_{x} \epsilon \Sigma(x) \ni \nu_{1} \odot \nu_{x} - \underline{\delta} \leq \mu_{x}.$$
(3.8)

Choose

$$\mu_{\mathbf{x}} = \mu \oplus \mathbf{x}, \text{ with } \mu \in \Sigma(0);$$

$$\nu_1$$
: = 1 $\oplus \theta$, ν_r : = $x \oplus \theta'$ with $\theta, \theta' \in \Sigma(0)$.

Set $\nu := \theta \wedge \theta'$. Then it follows immediately that

$$(1 \oplus \nu) \odot (\mathbf{z} \oplus \nu) \leq (\mu \oplus \mathbf{z}) + \underline{\underline{\delta}}$$

(by (3.8))

and consequently, $(\nu \oplus x) \odot \nu \leq \mu + \underline{\delta}$ which proves that

$$\forall \mu \epsilon \Sigma(0), \ \forall x \epsilon D^*, \ \forall \delta \epsilon I_0 \ \exists \nu \epsilon \Sigma(0) \ni (\nu \oplus x) \odot \nu \leq \mu + \underline{\delta} \ .$$

DEFINITION 3.4. Let $(D, +, \cdot)$ be a commutative division ring and $(D, +, \cdot, t(\Sigma))$ a fuzzy neighborhood ring. Then a fuzzy set $\mu \epsilon I^D$ is said to be bounded in $(D, +, \cdot, t(\Sigma))$ if and only if for all $\kappa \epsilon \Sigma(0)$ and for all $\delta \epsilon I_0$ there exists $\theta \epsilon \Sigma(0)$ such that $\mu \odot \theta \le \nu + \underline{\delta}$.

PROPOSITION 3.5. Let $(D, +, \cdot)$ be a commutative division ring and $(D, +, \cdot, t(\Sigma))$ a fuzzy neighborhood ring. Then the following statements are equivalent:

(B1): $\mu \epsilon I^D$ is bounded in $(D, +, \cdot, t(\Sigma))$;

(B2): $\forall \nu \in \Sigma(0), \forall \delta \in I_0 \exists x \in D^* \ni \mu \odot x \leq \nu + \underline{\delta}$.

PROOF. (B1) \Rightarrow (B2) is trivial, we prove (B2) \Rightarrow (B1). Let $\mu \epsilon I^D$, $\nu \epsilon \Sigma(0)$ and $\delta \epsilon I_0$. Then in view of Theorem 3.1 (iv) there exists a $\nu' \epsilon \Sigma(0)$ such that

$$\nu' \odot \nu' - \delta/\underline{3} \leq \nu$$
 (3.9)

۵

By hypothesis, there is $x \in D^*$ such that

$$\mu \odot \boldsymbol{x} - \delta/\underline{3} \leq \nu' \tag{3.10}$$

Thus we have

$$\nu' \odot (\mu \odot x) \underset{(by(3.10))}{\leq} \nu' \odot \nu' + \delta/\underline{3}$$

$$\underset{(by(3.9))}{\leq} \nu' + 2\delta/\underline{3}$$
(3.11)

Again applying Theorem 3.1(ii), we can find $\theta \in \Sigma(0)$ such that

$$\theta \odot x \sim \leq \nu' + \delta/\underline{3}$$
$$\Rightarrow \theta \leq \nu' \odot x + \delta/\underline{3} \qquad (3.12)$$

So for any $z \in D$:

$$\mu \odot \theta(z) = \bigvee_{st = z} \mu(s) \land \theta(t)$$

$$\leq \bigvee_{st = z} \mu(s) \land (\nu' \odot x)(t) + \delta/3$$

$$= \mu \odot (\nu' \odot x)(z) + \delta/3$$

$$\leq \nu(z) + 2\delta/3 + \delta/3 = \nu(z) + \delta$$

$$(by(3.11))$$

$$\Rightarrow \mu \odot \theta \leq \nu + \underline{\delta}.$$

DEFINITION 3.6. Let $(D, +, \cdot)$ be a commutative division ring and $(D, +, \cdot, t(\Sigma))$ a fuzzy neighborhood ring. A fuzzy set $\mu \epsilon I^D$ is said to be β -restricted in $(D, +, \cdot, t(\Sigma))$ for $0 < \beta \le 1$ if and only if

$$\overline{\mu^{\sim}}(0) < \beta$$

Where - is the fuzzy closure operator given in Proposition 2.3 [6]

PROPOSITION 3.7. Let $(D, +, \cdot)$ be a division ring and $(D, +, \cdot, t(\Sigma))$ a fuzzy neighborhood ring. Then the following statements are equivalent:

(R1): $\mu \epsilon I^D$ is β -restricted in $(D, +, \cdot, t(\Sigma))$ for $0 < \beta \le 1$;

(R2): $\exists \nu \epsilon \Sigma(0) \ni \mu \odot \nu(1) < \beta$.

PROOF. (R1)=(R2). Let $0 < \beta \le 1$, and $\mu \epsilon I^D$ be β -restricted. Suppose that $\nu \epsilon \Sigma(0)$ is such that $\mu \odot \nu(1) \ge \beta$; i.e., $\forall_{xy} = 1^{\mu(x)} \land \nu(y) \ge \beta$

 $\Rightarrow \exists x \in D, y \in D^*$ such that xy = 1, i.e., $x = y^{-1}$ such that

$$\mu(y^{-1}) \wedge \nu(y) \ge \beta$$

$$\Rightarrow \bigwedge_{\nu \in \Sigma(0)} \bigvee_{y \in D^*} \mu(y^{-1}) \wedge \nu(y) \ge \beta$$

$$\Rightarrow \bigwedge_{\nu \in \Sigma(0)} \bigvee_{y \in D^*} \mu^{\sim}(y) \wedge \nu(y) \ge \beta$$

 $\Rightarrow \overline{\mu^{\sim}}(0) \ge \beta$, contradiction with the fact that μ is β -restricted. (R2) \Rightarrow (R1). Let $\mu \epsilon I^D$ be not β -restricted for $0 < \beta \le 1$.

This means simply that

$$\begin{split} & \bigwedge_{\nu \in \Sigma(0)} \quad \bigvee_{y \in D^*} \quad \mu^{\sim}(y) \land \nu(y) \geq \beta \\ \Rightarrow \forall \nu \in \Sigma(0): \bigvee_{y \in D^*} \quad \mu^{\sim}(y) \land \nu(y) \geq \beta. \end{split}$$

Now we have

$$\mu \odot \nu(1) = \bigvee_{st = 1} \mu(s) \wedge \nu(t)$$
$$= \bigvee_{s = t^{-1} \in D^*} \mu^{\sim}(t) \wedge \nu(t) \ge \beta$$

a contradiction with (R2).

REFERENCES

- 1. AHSANULLAH, T.M.G., Fuzzy neighborhood modules and algebra, Fuzzy Sets and Systems 35, (1990), 219-229.
- AHSANULLAH, T.M.G. & GANGULY, S., Fuzzy neighborhood rings, Fuzzy Sets and Systems 34, (1990), 255-262.
- 3. AHSANULLAH, T.M.G. & MORSI, N.N., Invariant probabilistic metrizability of fuzzy neighborhood groups, Fuzzy Sets and Systems 47, (1992), 233-245.
- 4. KATSARAS, A.K., Linear fuzzy neighborhood spaces, Fuzzy Sets and Systems 16, (1985), 25-40.
- 5. MORSI, N.N., Nearness concepts in fuzzy neighborhood spaces and in their fuzzy proximity spaces, Fuzzy Sets and Systems 31, (1989), 83-109.

۵

- 6. LOWEN, R., Fuzzy neighborhood spaces, Fuzzy Sets and Systems 7, (1982), 165-189.
- 7. LOWEN, E., LOWEN, R. & WUYTS, P., The categorical topology approach to fuzzy topology and fuzzy convergence, Fuzzy Sets and Systems 40, (1991), 347-373.
- 8. KAPLANSKY, I., Topological rings, Amer. J. Math. 69, (1947), 153-182.
- 9. WANG-JIN, L., Operations on fuzzy ideals, Fuzzy Sets and Systems 11, (1983), 31-41.