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1. INTRODUCTION.
Equivalence between isometric immersions of a Riemannian manifold into another one has

been an interesting fruitful area of research for a long time ([1], [4], [6], [7], [12]). The concept of

equivalence between two isometric immersions may be given as follows.
Let fl:M--N and f2:M--,N be two different isometric immersions of a Riemannian manifold

M into another Riemannian manifold N. The immersion J’l will be equivalent to 12 (up to an

isometry r and N) if there exists an isometry r:N-N such that r J’l )’2" We may write J’l I2
(rood. r).

If the above mentioned concept is satisfied for each pair of isometric immersions of M into

N, we say that M is uniquely isometrically immersed in N. In classical differential geometry M is

said to be rigid.
If for each pair of isometric immersions fI:M--,N and ’2:MN" there exists a continuous

curve rs, 8 e [0,hi in the group G of isometries of N such that ro id and ra 1 2’ we say that
M is uniquely continuously isometrically immersed into N [8].

In [1] the following remarkable result concerning isometric immersions into (n + 1)-Euclidean
space En + has been proved.

THEOREM 1.1. Let M be a connected, orientable C-Riemannian n-manifold. Suppose
that the Gauss maps of each pair j’ and of isometric immersions of M into En + differ by an

isometry of En + 1. Then M is uniquely isometrically immersed in En + if any of the following
conditions is satisfied.

(a) M is compact,

(b) There exists at least one point m e M where all sectional curvatures are positive,

(c) There exists at least one point rn e M such that 1" (or ) is not minimal at rn, and M has
no flat points with respect to )’ (or ] ).
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As far as we are concerned, the corresponding study in hyperbolic space Hn +1 has not yet

been considered. Accordingly, we devote the present work to deal with the rigidity problem of

hypersurfaces in hyperbolic space with constant sectional curvatnre as a receiving space. The

main result will be" stated n the next section. From now on all manifolds and maps are

sufficiently smooth for computations to make sense.

2. PRELIMINARIES AND RESULTS.
We begin this section by giving a brief word about the model of hyperbolic space we shall

use throughout the paper.

In Rn+2 with the natural basis O, el, e2,..., en+ 1’ n >_ 1, we consider a nondegenerate
symmetric bilinear form

n+l
b(z,y)= -Zoyo+ y zkyk r, y E Rn +2.

k:l

The pair Vn + 2 (Rn + 2,b is called the Mmkowski space.

Let 0(1,n + 1) denote the orthogonal group of b, i.e.,

where

0(1,n + 1) {A E Gl(n +2, R):b(Az, Av) b(r,y)}

{A Gl(n + 2, R):A’SA S}

0 ln+l

The fact that A’SA=S implies that det A= +l. A matrix A=(aij in 0(1,n+l) belongs to the

identity component if and only if det A and aoo > 1. Let G denote the identity component of

O(1,n + 1).

Now, the hypersurface in Vn+2 defined by b(z,y)=-! is the disjoint union of two

connected components:

Hn+I {z:Zo> 1} and Kn+ {z ( :Zo < -1}.

0(1,a + 1) acts transitively on while G acts transitively on Ha + [9].
Let z e Ha + 1, i.e., b(z,y) and zo _> 1. The tangent space TzHa ,+ is given, through the

identification by parallel displacement in Va + 2, by the subspace of all vectors a E Va + 2 such

that b(z,a)= 0. The restriction of to TzHa+ is positive definite. Thus the form b restricted to

the tangent space at each point of Ha + gives rise to a complete Riemannian metric on //a +

which is obviously invariant under G. Moreover, (Ha+ 1,b) is of constant sectional curvatures

K 1. Hence Ha + will be taken to be the model in which our immersions occur. For
geodesics, horodiscs, horospheres, central projection and other geometric properties of//a + we

refer the reader to ([4], [14]).
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The hypersurface + in vn + :2 defined by b(z,y) is connected Lorentz. We call . n +

the conjugate hypersurface of both Hn + and Kn + 1. (S Fig. 1).

Figure
Let I:M--,Hn+l be an immersion of the orientable manifold M. The Gauss map

:Mn + of this immersion is defined to be the parallel translation of the unit normal IV{m} of

M, as a hypersurface of Hn + 1, at /’(m) up to the origin 0 of Vn + 2. Hence, the Gauss image of M

will lie on the conjugate hypersurface n + of Hn + I.
Now, we state our result.

THEOREM 2.1. Let f and ] be two C isometric immersions of a connected, orientable

Riemannian n-manifold M(n > 2) into the (n+ 1)-hyperbolic space Hn+ 1C Vn+ 2. Suppose that

the Gauss maps and g differ by a matrix a e G. Then with any one of the conditions (i)-(iii)
below,/’ and ] differ by an isometry r of

(i) M has at least one point m e M where all sectional curvatures are greater than 1.

(ii) M is compact.

(iii) There exists at least one point m e M such that I (or ) is not minimal at m, and there

is no point in M with A 0 (or 0), where A is the second fundamental tensor.

Assume that a where is an element of G, then we can show that the immersion

f a .:MHn + has the Gauss map of the form +/- a . The sign depends on whether

a is orientation preserving or not. Hence + which will be used, just for simplicity, instead

of =o.
In the light of the above discussions, let us take 3 and notice that if - we may

change the orientation to have again 3 . In this way, N(m)= (m) for every m e M up to a

parallel translation in Vn + 2. Let D be the Levi-Civita connection of Yn+ 2 and be the

induced connection on //n+ 1. Applying Weingarten equation to I(M) and (M) as immersed

hypersurfaces of Itn + 1, we have

,(,X 17 f, (-AX), (2.1a)

7 ,X 7, ] X), (2.1b)

where A and ] are the second fundamental tensors of I and ], respectively, and X is a tangent
vector of M. If we write D,f,X N in terms of its tangent component to Itn + and the normal

one, we hve

Dr,X N= V f,X N+

Since b(N,f.X) 0, then

I,X b(N,l(:)) b(Df X N,f(x}) + bN,I,X) 0 =

(2.2a)
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b(Df,X N,f(z)) 0
g =0. (2.2b)

To be consistent with the references we depend on, we shall replace b(X,Y) by < X,Y > in

all the following computations.

From (2.2a) and (2.2b), we have

From equations (2.1)-(2.3) we have

As N , then equations (2.4) give

Dr,x N= XT f,X N

O7,x N v],x N
(2.3a)

Df x N f,( AX) (2.4a)

D-/ ,x f -/*( ] x) (2.4b)

f,(AX) y ,(I X) (2.5)

up to a parallel translation in V" + 2.
LEMMA 2.1. A and ] have the same null space at each point of M.

PROOF. It is sufficient to show that AX=O if and only if iX=0. If AX=O, then

f,(AX) 0 and so ] ,(] x)= 0. Since ] is an immersion, then ], is injective and hence ] x 0.

The converse is direct.

LEMMA 2.2. A2 ]2.
PROOF. For arbitrary vectors X and Y tangent to M, we have

< ]2X, y > < iX,4Y > < ],(2Y) >
(2.6)

< f,(AX),f,(AY) > < AX, AY > < A2X, y >.

Hence the result.

LEMMA 2.3. (tr A)A (tr A )A (2.7)
PROOF. The Ricci tensor S of M, as being preserved by isometries, may be written as [9]

S / (tr A)A- A2 =" / (tr A )A i 2

where is the Ricci tensor of Hn + I. Then

(tr A)A- A2 (tr A )A ] 2.

Using Lemma 2.2, we obtain the requited result.
LEMMA 2.4.

(i) (tr A)2 (tr 2 )2
(ii) If trA# 0 at m, then 2 + A at m.

(iii) The choice of the sign in (ii) is constant in each component of the open set

V {m I(tr A)(m) # 0}.
PROOF. Part (i). This becomes direct from Lemma 2.3 when taking the trace of both sides

of equation (2.7).
Part (ii). If (tr A) (m)# O, then by part (i) we have that (tr 2) (m)# 0. Using equation

(2.8), we have [(tr A)/(tr )](m) + i. Applying equation (2.7), we obtain that ] + A at m.

Part (iii). If (tr A)(m):/: O, then as A is a continuous tensor field we have that (tr A)# 0 near
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m. Hence the subset v {ml(tr A)(m) 0} is an open subset of M.

Now consider the following cases"

(a) Let A at m and assume that in each neighborhood V of m there exists a point m

where A(rni)=-l(mi). In this way, we obtain a sequence of points {mi} for which

A(mi) - (rni). Taking the limit of both sides as m m we have

lirn A(mi) lirn A (rni).mf-.,m rnf-.,m

By the continuity of both A and , we have A(m)= -(m) which contradicts the assumption

and so A near m.

(b) If A - at m, we follow a similar discussion.

3. A RIGIDITY RESULT.
In this section we give a general rigidity result for hypersurfaces in Hn+ similar to

Theorem 6.4 p. 45-46 [9]. For notations and details we refer to [9]. Although the following result

has been already given in [13], we write its full proof as it is too important for the subsequent

results.

THEOREM 3.1. Let M be a connected n-dimensional Riemannian manifold and let f and

be isometric immersions of M into Hn+IcVn+2 with fields of unit normals and ,
,respectively. If the second fundamental forms h and of ! and (with respect to and ),
respectively, coincide on M, then there is an isometry r of Hn + such that r f.

PROOF. We follow the same procedure of [9] and start with the local version of the

theorem.

Assume that zo is a point of m. We have two different frames (el,e2,-..,en,,v) and

’ 2’ ’ n, , at Zo, where y f(z) and (z), respectively, such that

< ei, ej > <’’i,’j> < i,j <_ n

<,ei> <,Ti> =0, <Y, ei> <,’i> =0, <V,> <, > =0.

As G acts transitively on I-In+ 1, then there exists an orthogonal matrix r E G which is an

isometry of Itn+l such that r maps the frame (el,e2,...,,y) at zo upon the frame

f ,g 2, ", , at the same point zo.

In terms of local coordinates in a coordinate neighborhood U about to, simple calculations

using Gauss and Weingarten equations give the following two systems of partial differential

equations

i gij y + k Ffj ek + hij
j

j + rtj z t + hij

3/= -taJ zt
(7)

The main difference between these two systems and those of [9] is that the systems here are non-

homogeneous. In spite of this difference, the existence and uniqueness principle of solutions is

still working.
Since the two systems (I) and (T) above have the same initial conditions at zo, then by

uniqueness we have

ej=-gj, = onV, l<_j<_n.
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As ej Oy[Ozj, j 0-9/0rj, and since Y(Zo) (o), we have that y on U and the local

version is now proved.

The global version of the above theorem can be proved exactly as that of immersions into

Euclidean space En + [9].
Notice that for immersions into Euclidean space En + 1, the required isometry is a resultant

of translation in addition to an orthogonal matrix r 6-0(n+ 1). From the above theorem, it

becomes clear that in the case of immersions into hyperbolic space Hn + the isometry needed to

establish the proof is obtained purely from an orthogonal matrix of G acting on //n + by
restriction.

4. PROOF OF THEOREM 2.1.

In the light of Theorem 3.1, if we consider V to be the component of V on which ] a,
then there exists an isometry r of//n + such that r 7 ! on Vl. In the following we given
more significance of r.

Let us consider a point m6_V and take X 6-Tram to be an eigenvector of A(= ])
corresponding to a non-zero eigenvalue. Then equation (2.5) gives

I,(x) ],(x) (4.1)

Cgnsequently, if (rant A)(m) n, then all the eigenvalues of A are non-zeros and so

I,(Tm M)= 7 ,(Tm M) up to a parallel translation in Vn + 2. Now consider the following two

different cases:

Case (i). (m) I(m), 7 ,(Tin M) I,(Tm M) and (m) N(m).
In this case, the needed isometry of Hn + turns out to be the identity map.

Case (ii). I(m) 7 (m), ] ,(Tm M)//I,(Tm M) and (m)//N(m).
Clearly, (m) and l(m) should be antipodal points of . This situation will not occur unless

]’(M) C Hn + and 7 (M) C gn + which contradicts the assumption that both of the immersions !
and 7 are in//n + 1. Consequently, this case should be disregarded.

Using Theorem 3.1, we have the following.
LEMMA 4.1 If v is a component of v where ] A and rank A n at one point m 6- V

then I(x) 7 () on V1.
On the other hand if A ] and (rant A)(m) n, then l,(X) ,(X) V X 6. Tm M.

In this case I,(Tm M) will also be parallel to ,(Tm M) and as mentioned above I(m) should
coincide with ] (m). The isometry of Un + needed is different from tle identity. In fact it is

some sort of reflection.

LEMMA 4.2. If v2 is a component of V where ] -A and rank A n at one point m 6- V2
then the matrix r e G which satisfies r(m) m, r(N) N and r(X) X V X 6- Tm M has the

property that r ] (z) I() on V2.
In the following, we shall restrict ourselves to the case of Lemma 4.1 mentioned above and

give a hint to show how to deal with the case of Lemma 4.2.

Let us define the real-valued function F on M as follows

F(a)-- < f(a),c >,

where c is a constant vector. Following computations similar to that in ([9], p. 342) we have that

or
AF nF +n < rl, c >,
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where A-n and 0 is he mean curvature vector =l (r A)N of M as a hypersurface of

//n + 1. The new operator is elliptic and has Co coefficients.

We are now in a position o prove Theorem 2.1.

PROOF OF PANT (i). Le be a poin of vhere all sectional curvatures are greater
than -1. Then rank A rank n and A is definite at m. Let m ( V where V is the

component of v where , A. Hence .(X)= f.(X) for each tangent vector X ( Tm M. From the

above discussions, the identity map will be the required isometry which takes (v 1) to f(V1).
Let W be the largest open set of M containing V such that z z. Following the same

procedures of [1] we conclude that for every boundary point p ( Ow, there exists a neighborhood

Q of l0 such that for each q Q o v, A at q which means that Q intersects the component v
only. Hence we may write w t3 Q c Vl t3 V’ 2" For points in v 1, we have W 0 as X A on V 1’ and

for points in Q- V 1, we have W 0. Consequently, W r on the whole of W o Q.

Consider the real-valued function 9:w oQ-,R defined by
g(z) < f(z)- f (z), c >.

Applying the operator to g, we have

Ag= A <f(x)-f(x), c> A </(z), c> A <f(z), c> =n<r/,c> --n<,c> =0

on W t O. Since 0 on W, then a 0 on W o 0 by the unique continuation principle of second

order elliptic operators with 6,00 coefficients ([3], [0], []). Hence /’(-) 7 (-) on woo
contradicting the maximality of w. Consequently, w will be the whole of M and so f(x)=

for all points of M and we have that M and we have that M is rigid which ends the proof of part

(i).
Considering m ( V2 where X -A, we apply r, given in Lemma 4.2, to//n + and carry out

the proof ta&ing

as m is invariant under r.

PROOF OF PART (ii). This part of the theorem may be considered as a corollary of part

(i) in the following sense.

It has been proved in ([2], [5]) that if M is compact and isometrically immersed in Hn+ 1,
then there exists a point of m all of whose sectional curvatures are positive. Applying part (i) we
obtain the desired result.

PROOF OF PART (iii). In this case, as tr A 0 at rn and rank A # 0 everywhere on M, the

same procedure can be followed but the required isometry of hrn + will be different from those of

parts (i) and (ii).

ACKNOWLEDGEMENT. The author is grateful to the referee for his valuable suggestions.

REFERENCES

1. ABE, K. & ERBACHER, J., Isometric immersions with the same Gauss map, Math. Ann.
215 (1975), 197-201.



732 M. BELTAGY

AMARAL, L., Hypersurfaces in non-Euclidean space, Ph.D Thesis, Univ. California,
Berkeley (1964).

ARONSZAJN, N., A unique continuation theorem for solutions for elliptic partial
differential equations or inequalities of second order, J. Math. Pures & Appl. 36 (1975),
235-249.

4. BELTAGY, M., Immersions into manifolds without conjugate points, Ph.D. Thesis,
Durham Univ., U.K. (1982).

5. BELTAGY, M., A proof of L. Amaral’s theorem,Ind. J. Pure & Appl. Math. 14 (6) (1983),
703-706.

6. BELTAGY, M., A rigidity theorem in sphere, J. Math. & Comp. Sci. (In Press).
7. DOCARMO, M.P. & WARNER, F.W., Rigidity and convexity of hypersurfaces in sphere,

J. Diff. Geo. 4 (1970), 133-144.

8. GOLDSTEIN, R.A. & RYAN, P.J., Infinitesimal rigidity of submanifolds, J. Diff. Geo. l0
(1975), 49-60.

9. KOBAYASHI, S. & NOMIZU, K., Foundations of Differential Geometry, Vol. & II, New
York, Interscience Publishers (1963-1969).

10. MIZOHATA, S., Theory of partial differential equations, Cambridge Univ., 1973.
11. PROTTER, M., A unique continuation for elliptic equations, Trans. Amer. Math. So<:. 95

(1960), 81-91.

12. SACKSTEDER, R., The rigidity of hypersurfaces, J. Math. Mech. II (1962), 929-940.
1. SASAKI, S., A proof of the fundamental theorem of hypersurfaces in a space-form,

Tensor, N.S. 24 (1972), 363-373.
14. SPIVAK, M., A Comprehensive Introduction to Differential Geometry, Vol. IV & V,

Publish oi Perish, Inc., 1975.


