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1. INTRODUCTION AND PRELIMINARIES.
In this paper, we prove several common stationary point theorems for four set-valued

mappings, which are improvements upon some earlier results obtained by Fisher [1], [2], [3].
Let (X,d) be a metric space and CL(X) be the class of all nonempty closed subset of X. For

z x and A c_ X, let D(z,A) iny{d(z,y):y e A}.
DEFINITION 1.1. For A,B CL(X), define

H(A’B)=fmaz{suPreAD(z’B)’I suPs’BD(A’Y)}’ if it exists,

too, otherwise.

Then//is called the getera//zed Hadar d/.Cm:e jmct/an for the class CL(X) induced by the
metric d.

DEFINITION 1.2. For A,B 6_ CL(X), define h:CL(X) x CL(X}--.I + by

sup{d(x,y) x A,y B}, if it exists,
h(A,B)

too, otherwise.

DEFINITION 1.3. A set-valued mapping S:X-.CL(X) is said to be nettr/y-dem.j// if

ct(q(A))<ct(A) for any bounded and $-invariant subset of X with a(A)>0, where a is the
Kuratowski’s measure of non-compactness.

DEFINITION 1.4. Let F,G,S,T X-.CL(X) be set-valued mappings. For some z X, define
the arb/t O(z) of r by

O(z) {y X:y z or y =/’(z) for some " },
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’Y being the subsemigroup generated by F,G,S and T in the semigroup of all self-mappings on X
with composition operation.

DEFINITION 1.5. A point is said to be a common stionarll point of set-valued mappings
F and

2. THE MAIN RESULTS.
Throughout this paper, for any set-valued mapping S:X-,CL(X), we assume that all the

powers of $ map X into CL(X). First of all, we prove the following crucial result to be used in
the sequel.

LEMMA 2.1. Let (X,d) be a compact metric space and S:X-CL(X) be a set-valued mapping
such that S’ is continuous with respect to the generalized Hausdorff distance function H for some

positive integer i. If ‘4 nF= 1Sk’(X), then S(‘4) .4.

PROOF. Clearly, SIk + )’(x) c Sk’(X) for/ 1,2,. Also, c x implies

S C_ A. (1.1)

Let e A. Then e $( + )’(X) for k 1,2, ., and so there exists S’,(X) such that y S’x
for : 1,2,.... Since x is compact, there exists a convergent subsequence {,} of {rk} with the
limit z. Further, since {zj, zj + , c_ SJ,(X) for j 1,2, ., we have z e A. Also, we have

D(y,S’z) < D(y, S’zt + H(S’zt,Sz).

Letting I-0, we get ySiz. Hence there exist z,,zi_,. .,zX such that ySt,,
z,(Sz,_,..-,z3(SSz2, and zSz. By (1.1), since zA, it follows that SzC_A and so zA. A
repeated application of (1.1) yields that z ( A. Therefore, we have St for some z A. Thus,
A c_ S(A). From this and (1.1), we conclude that S(A) A. This completes the proof.

Now, we are in a position to present our main results. We denote

M(z,y, FP, Gq, SS, Tt) rnaz{h(SSz, Tty),h(SSz, FPz),h(Tty, Gqy), h(SSz, Gqy),h(Tty, Ft’z)}

and

m(z,y, Ft’,Gq, SS, Tt) maz{h(SSz, Tty),h(SSz, Gqy),h(Tty, F’z)},

where ,q,s and are positive fixed integers.
THEOREM 2.1. Let (X,d) be a complete metric space and F,G,S,T:X-,CL(X) be set-valued

mappings such that

(2.1) F,G,S,T and (FG) are continuous with respect to the distance function H for some

positive integer i. Also, F,G,S and T are nearly-densifying,
(2.2) for some t X, the orbit O(zo) is bounded,
(2.3) H(FPz, Gqy) < M(z,y, FP, Gq, Ss, Tt),
(2.4) FG GF,(FG)’S" S’(FG) and (FG)iT Tt(FG).

Then F, G,S and T have a unique common stationary point in X.

PROOF. Putting A O(zo), we have clearly I(A)= A for I {F,G,S,T}. Also, the continuity
of set-valued mappings F,G,S and T yields that I()c_ for I {F,G,S,T}. Further, we have

A={ro}UF(A)UG(A)US(A)UT(A). Thus, a(A)=maz{a(zo),a(F(A)),a(G(A)),a(S(A)),a(T(A)) and
also is compact. Now, define B t3=(FG)’-(). Then B is compact. By Lemma 2.1,
(FG)(B) B and the condition (2.4) ensures that F(B) B G(B), S’(B) C_ B and Tt(B) c_ B. Since
B is compact, there exist z,z e B such that d(z,z)= stp{d(z,y) z, y e B} ={B), say. Also,
there exist w,wa q. B such that z e FPw and

_
Gqw. Suppose that (B) > 0. Then, by (2.3), we
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have

< M(wl, w:, F’ Gv, S T)

_< (B),

which is a contradiction. Thus, (B)=0 and hence B {z}, say. Therefore, z is a common

stationary point of F,G,S and T. The uniqueness of z follows from condition (2.3). This

completes the proof.
THEOREM 2.2. Let (X,d) be a compact metric space and F,G,$,T:X-,CL(X) be set-valued

mappings such that

(2.5) (FG)’ is continuous for some positive integer i,

(2.6) H(F’z, Gqy) < M(z,y,F,Gq, S’,Tt) whenever the left-hand side is positive,

(2.7) FG GF,(FG)iS" S’(FG) and (FG)iT Tt(FG)i.
Then F,G,S and T have a unique common stationary point z in X. Further, z is the unique

common stationary point of F and G.

PROOF. If we put B n= 1(FG)n(X), as in the proof of Theorem 2.1, we have B {z) and

z is a unique common stationary point of F,G,S and T. Since any common stationary point of F

ad G is a point of B {z}, it follows that z is the unique common stationary point of F and G.

This completes the proof.
REMARK. Theorem 2 of Fisher [2] and theorems in Fisher [3] follow as corollaries of our

Theorem 2.2. In fact, our theorem can be regarded as an improvement over the above theorems

due to Fisher.

THEOREM 2.3. Let (X,d) be a complete metric space and F,G,S,T:X-,CL(X) be set-valued

mappings such that

(2.8) F,G,S,T,F and G are continuous with respect to the distance function H for some

positive integers and j. Also, F,G,S and T are nearly-densifying,

(2.9) for some z X, the orbit O(zo) is bounded,

(2.10) H(FPz, GqF) < m(z,F, FP, Gq, S’,Tt) whenever the left-hand side is positive,

(2.11) SF FiS" and TtGq GqTt.
Then F, G,S and T have a unique common stationary point z in X.

PROOF. Let A O(zo). Then as in the proof of Theorem 2.1, is compact. If we define

lFin 1GinB t= (A) and K t= (A),

by Lemma 2.1, F(B)= B and G(K)= K. Also, it follows that B and K are compact subsets of X.

By the condition (2.11), also we have $(B)_ B and T(K)C_ K. Then, there exist zl, B and

yl,y K such that

d(Zl,Yl) sup{d(z,y):z B,I/ K) (B,K), say,

with z FPwl and y GqwT Suppose that (B,K) > 0. Then, by the condition (2.10), we have

5(B, K) d(Zl,yl)_
H(FPwI,Gqw)

< m(Wl, w2, Fp Gq, S, T
<_,(,K),
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which is a contradiction. Therefore, ,S(B,K)= 0 and B K {z}. Thus z is a common stationary

point of F,G,S and T. The uniqueness of follows easily from the condition (2.10). This

completes the proof.

THEOREM 2.4. Let (X,d) be a compact metric space and F,G,S,T:X--,CL(X) be set-valued

mappings such that

(2.12) F’ and GJ are continuous with respect to the distance function H for some positive

integers and j,

(2.13) H(Ft’x, Gqy) < m(x,y, Ft’,Gq, SS, Tt) whenever the left-hand side is positive,

(2.14) F’S S’F’ and GqT TtGq.

Then F,G,S and T have a unique common stationary point in X. Further, z is the unique

common stationary point of the pairs F,S and G,T. Also, is the unique common stationary

point of F and G.

PROOF. Let B r,= 1F’"(X) and K r.= IGJ"(X). Then as in the proof of Theorem 2.3,
we get B K {z} and is a unique common stationary point of F,G,S and T. Since any

stationary point of F is a point of B {z} and any stationary point of G is a point of K {z}, it

follows that is the unique stationary point of F as well as of G. This completes the proof.
REMARK. Theorem 5 of Fisher [1] follows as a corollary of our Theorem 2.3.
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