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ABSTRACT: Let C(X) be the space of real-valued continuous functions on a Hausdorff completely
regular topological space X, endowed with the compact-open topology. In this paper necessary and
sufficient conditions are given for a subspace of C(X) to be the range of a pointwise contractive
projection in C(X)
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Several authors have considered the problem of characterizing the subspaces of C(K) admitting
contractive projections, K being a compact Hausdorff space (cf. Lindestrauss (1], Lindestrauss-
Wulbert [2) and Lindberg 13)). And when X is 8 Hausdorff completely regular topological space with a
fundamental sequence of compact sets, we have discussed in (4] conditions for a subspace E of C(X) to
be the range of a compact contractive projection in C(X). In this note we want to study the problem
that arises when the projection p of C(X) onto E is pointwise contractive, i ¢ when for each x « X it is
Ipf(x) ¢ If(x)| for every fe C(X).

Hereafter X will stand for any Hausdorff completely regular topological space and C(X) for the
space of the continuous real valued functions on X endowed with the compact-open topology Given a
linear subspace E of C(X) andx« X, we set Ey = (f€ E If(x) ¢ 1) and Cy = (fe C(X) If(x)| ¢ 1), holding E,
and Cx° for their polar sets in the topological dual spaces of E and C(X), respectively. E is called
separating if for each x, y € X, x » y, there is some f e E such that f(x) # f(y). For each x € X, 6, will
denote the linear form of (C(X))' (E') such that §,(f) - f(x) Ve C(X) (E). If A is a subset of (C(X))', z is
called an extreme pointof Aifz=Ax+ (I-A)y, with0 <X <1, x,yc A, impliesthatz-x-y Given xc X. x
is a double point of X if there is some y, € X such that f(x) + f(yy) = 0 for every f € E. We shall say x is
an autodouble point if f(x) = 0 for every f«E, i. e. if x is a double point and y, = x. If x is not a double
point, x is called a single point. If E is separating and x is a double point then y, is unique, there
being at most only one autodouble point Clearly, there are no double points if E contains the constant
functions.

LEMMA. Let E be a separating linear subspace of C(X). For each x € X, £6, are the only extreme
points of £x°.

L . —v(E.E)
PROOF. Clearly the 6 (E E)-closed convex cover of F-= (6,. -6,) is contained in Ex° and if @ ¢ CF

there must be some some f ¢ Esuch that @(f)> 1 and If(x)| ¢ 1. ie @ ¢ E, . On the other hand Ex° has
some extreme point. since it is weakly compact, and it will be contained in F, [5, §25.1 (6)] Hence £5,
are the only extreme points of £x°.
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PROPOSITION. Let E be a separating subspace of C(X) and p a pointwise contractive projection of
C(X) ontoE Then for each x e X, the transpose linear mapping p* of p satisfies

i) p*(64) = 0 if x is an autodouble point

ii) p*(64) = &, if 1 is not an autodouble point

PROOF. i) For each f & C(X), p*6,(f) =6,(pf) = (pf)(x) = 0 since pf « E. Hence p*(6,) =0

ii) Let E(x) .= (¢ « Cx°, “’IE - 6x) which, by Krein-Millman's theorem, coincides with the closed

convex cover of its extreme points Now p*é, ¢ E(x) since for each g € Cy, |p*6,(g)l = 164(pg)l = Ipg(x)l
$ 1g(x)l < 1, and for each f « E, p*6,(f) - 6,(pf) ~ §,(f) Besides, each extreme point of E(x) is an
extreme point of Cx° since if @ is an extreme point of E(x) and ¢ =ocu® + (1-ax)v*, u*, v* € Cx°, then &,
= QIE - ¢>¢u'|E ‘ (l-oc)v’lE, where u'lE, v’|E¢ E,‘°, So, 6y = u'lB = v’lE. and u*, v* belong to E(x) and
coincide with @ Therefore, by Proposition I, ¢ - &, with || - 1. As x is not sutodouble, there is some
f ¢ E such that 0 » f(x) = §,(f) which, taking into account that ¢ € E(x), takes the same value as ¢(f) =
ocby (f) - aef(x) Hence ot = 1and p*éy = 6.

From this Proposition it follows that if z is an autodouble point, then z is an isolated point since if
1y is the function identically one on X, (ply)(x) = 6x(plx) = (p*6y)(1y) = 6,(1y) = 1 for each x » 2, and
(ply)(2) = 0. Moreover, for each x » 2 the equation f(x) « f(y) = 0 Vf ¢ E has no solution since ply« E
and no point x » 2 is a double point. Consequently,

"THEOREM 1. Let E be a separating subspace of C(X) and p a pointwise contractive projection of C(X)
onto E. Then

i) If for each xe X there is some [ € E such that f(x) # 0. every pointof X is single.

ii) If there is some x ¢ X such that f(x) - 0 for each f« E, x is the only double point of X. Moreover x
is isolated and, clearly, autodouble.

THEOREM 2. A locally convex topological vector space E is isomorphic to the range of a pointwise
contractive projection in C(X) if and only if E is isomorphic to either C(X) or some C,(X) = (f e C(X)
f(z) =0),2¢X.

PROOF. Assume E is separating. If each point x e X is single, pf(x) - §,(pf) - p*6,(f) -6,(f) - f(x) for
every f « C(X) Sof = pf « E. On the other hand, if there exists some double point z, E is contained in
C,(X). But for each f € C,(X). pf(z) = 0 and pf(x) = f(x) for x » z. If E is not separating. we are able to
form the quotient by identifying those points which are not separated by E and the same conclusion
yields.

Conversely, if E is isomorphic to some C,(X), then the mapping p : C(X) - C,(X) defined by p(f) - f,,
where f,(x) = f(x) for x » zand £,(z) = 0, is pointwise contractive and pf = f for each fe C,(X)
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