RESEARCH NOTES

NOTE ON POINTWISE CONTRACTIVE PROJECTIONS

L.M. SANCHEZ RUIZ and J.R. FERRER VILLANUEVA

Departamento de Matemática Aplicada Universidad Politécnica de Valencia 46071 Valencia Spain

(Received April 16, 1992)

ABSTRACT: Let C(X) be the space of real-valued continuous functions on a Hausdorff completely regular topological space X, endowed with the compact-open topology. In this paper necessary and sufficient conditions are given for a subspace of C(X) to be the range of a pointwise contractive projection in C(X)

KEY WORDS AND PHRASES: Contractive projection, extreme point. 1980 AMS SUBJECT CLASSIFICATION CODES. 47B38, 47B99.

Several authors have considered the problem of characterizing the subspaces of C(K) admitting contractive projections, K being a compact Hausdorff space (cf. Lindestrauss [1], Lindestrauss-Wulbert [2] and Lindberg [3]). And when X is a Hausdorff completely regular topological space with a fundamental sequence of compact sets, we have discussed in [4] conditions for a subspace E of C(X) to be the range of a compact contractive projection in C(X). In this note we want to study the problem that arises when the projection p of C(X) onto E is pointwise contractive, i e when for each $x \in X$ it is $|pf(x)| \leq |f(x)|$ for every $f \in C(X)$.

Hereafter X will stand for any Hausdorff completely regular topological space and C(X) for the space of the continuous real valued functions on X endowed with the compact-open topology Given a linear subspace E of C(X) and $x \in X$, we set $E_{X}:= \{f \in E | f(x)| \le 1\}$ and $C_X = \{f \in C(X) | f(x)| \le 1\}$, holding E_X° and C_X° for their polar sets in the topological dual spaces of E and C(X), respectively. E is called separating if for each x, $y \in X$, $x \neq y$, there is some $f \in E$ such that $f(x) \neq f(y)$. For each $x \in X$, δ_X will denote the linear form of $(C(X))^{\circ}$ (E') such that $\delta_x(f) = f(x) \forall f \in C(X)$ (E). If A is a subset of $(C(X))^{\circ}$, z is called an extreme point of A if $z = \lambda x + (1-\lambda)y$, with $0 < \lambda < 1$, $x, y \in A$, implies that z = x - y Given $x \in X$, $x \equiv x$ is a double point of X if there is some $y_X \in X$ such that $f(x) + f(y_X) = 0$ for every $f \in E$. We shall say x is an autodouble point if f(x) = 0 for every $f \in E$, i. e. if x is a double point then y_X is unique, there being at most only one autodouble point. If E is separating and x is a double points if E contains the constant functions.

LEMMA. Let E be a separating linear subspace of C(X). For each $x \in X$, $\pm \delta_X$ are the only extreme points of E_X° .

PROOF. Clearly the $\delta(E^{\circ}E)$ -closed convex cover of $F = (\delta_x, -\delta_x)$ is contained in E_x° and if $\varphi \notin \overline{CF}^{\circ}(E^{\circ}, E)$ there must be some some $f \in E$ such that $\varphi(f) > 1$ and $|f(x)| \le 1$, i.e. $\varphi \notin E_x^{\circ}$. On the other hand E_x° has some extreme point. since it is weakly compact, and it will be contained in F, [5, \$25.1 (6)] Hence $\pm \delta_x$ are the only extreme points of E_x° .

PROPOSITION. Let E be a separating subspace of C(X) and p a pointwise contractive projection of C(X) onto E Then for each $x \in X$, the transpose linear mapping p^{*} of p satisfies

i) $p^{+}(\delta_{x}) = 0$ if x is an autodouble point

ii) $p^*(\delta_x) = \delta_x$ if x is not an autodouble point

PROOF. i) For each $f \in C(X)$, $p * \delta_X(f) = \delta_X(pf) = (pf)(x) = 0$ since $pf \in E$. Hence $p^*(\delta_X) = 0$

ii) Let $E(x) = (\varphi \in C_x^{\circ}, \varphi|_E - \delta_X)$ which, by Krein-Millman's theorem, coincides with the closed convex cover of its extreme points Now $p^*\delta_X \in E(x)$ since for each $g \in C_X$, $|p^*\delta_X(g)| = |\delta_X(pg)| = |pg(x)| \leq |g(x)| \leq 1$, and for each $f \in E$, $p^*\delta_X(f) - \delta_X(f) = \delta_X(f)$ Besides, each extreme point of E(x) is an extreme point of C_x° since if φ is an extreme point of E(x) and $\varphi = \alpha u^* + (1-\alpha)v^*$, u^* , $v^* \in C_x^{\circ}$, then $\delta_X = \varphi|_E - \alpha u^*|_E + (1-\alpha)v^*|_E$, where $u^*|_E, v^*|_E \in E_x^{\circ}$. So, $\delta_X = u^*|_E = v^*|_E$, and u^* , v^* belong to E(x) and coincide with φ Therefore, by Proposition 1, $\varphi = \alpha \delta_X$ with $|\alpha| = 1$. As x is not autodouble, there is some $f \in E$ such that $0 * f(x) = \delta_X(f)$ which, taking into account that $\varphi \in E(x)$, takes the same value as $\varphi(f) = \alpha \delta_X(f) = \alpha f(x)$.

From this Proposition it follows that if z is an autodouble point, then z is an isolated point since if 1_X is the function identically one on X, $(p1_X)(x) = \delta_X(p1_X) = (p^*\delta_X)(1_X) = \delta_X(1_X) = 1$ for each $x \neq z$, and $(p1_X)(z) = 0$. Moreover, for each $x \neq z$ the equation $f(x) \neq f(y) = 0$ $\forall f \in E$ has no solution since $p1_X \in E$ and no point $x \neq z$ is a double point. Consequently,

'THEOREM 1. Let E be a separating subspace of C(X) and p a pointwise contractive projection of C(X) onto E. Then

i) If for each $x \in X$ there is some $f \in E$ such that $f(x) \neq 0$, every point of X is single.

ii) If there is some $x \in X$ such that f(x) = 0 for each $f \in E$, x is the only double point of X. Moreover x is isolated and, clearly, autodouble.

THEOREM 2. A locally convex topological vector space E is isomorphic to the range of a pointwise contractive projection in C(X) if and only if E is isomorphic to either C(X) or some $C_z(X) = \{f \in C(X) | f(z) = 0\}, z \in X$.

PROOF. Assume E is separating. If each point $x \in X$ is single, $pf(x) - \delta_X(pf) - p^*\delta_X(f) - \delta_X(f) - f(x)$ for every $f \in C(X)$. So $f = pf \in E$. On the other hand, if there exists some double point z, E is contained in $C_2(X)$. But for each $f \in C_2(X)$, pf(z) = 0 and pf(x) = f(x) for $x \neq z$. If E is not separating, we are able to form the quotient by identifying those points which are not separated by E and the same conclusion yields.

Conversely, if E is isomorphic to some $C_2(X)$, then the mapping $p: C(X) \to \mathcal{L}_2(X)$ defined by $p(f) = f_2$, where $f_2(X) = f(X)$ for x + z and $f_2(z) = 0$, is pointwise contractive and pf = f for each $f \in C_2(X)$

REFERENCES

- 1 LINDESTRAUSS, J. Extension of compact operators. <u>Mem. Amer. Math. Soc.</u> 48 (1964).
- LINDESTRAUSS, J. and WULBERT, D.: On the classification of the Banach spaces whose duals are L₁ spaces, <u>J. Funct. Anal.</u> 4 (1969), 332-349
- LINDBERG K.: Contractive Projections in Continuous Function Spaces, <u>Proc. Amer. Math. Soc.</u> 36 (1972), 97-103
- FERRER VILLANUEVA, J.R.; LOPEZ PELLICER, M and SANCHEZ RUIZ, L.M.: Compact Contractive Projections in Continuous Function Spaces. <u>Michigan Math. J.</u> 38 (1991), 395-400
- 5. KOTHE, G.: Topological Vector Spaces L. Springer-Verlag. Berlin, Heidelberg, New York 1969