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ABSTRACT: Let C(X) be the space of real-valued continuous functions on a Hausdorff completely

regular topological space X. endowed with the compact-open topology. In this paper necessary and

sufficient conditions are given for a subspace of C(X) to be the range of a pointwise contractive

projection in C(X)
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Several authors have considered the problem of characterizing the subspaces of C(K) admitting

contractive projections. K being a compact Hausdorff space (cf. Lindestrauss [I]. Lindestrauss-

Wulbert [7] and Lindberg [3]). And when X is a Hausdorff completely regular topological space with a

fundamental sequence of compact sets, we have discussed in [4] conditions for a subspace E of C(X) to

be the range of a compact contractive projection in C(X). In this note we want to study the problem
that arises when the projection p of C(X) onto E is pointwise contractive, when for each X it is

Ipf(x)l <- If(x)l for every f C(X).

Hereafter X will stand for any Hausdorff completely regular topological space and C(X) for the

space of the continuous real valued functions on X endowed with the compact-open topology Given a
linear subspace E of C(X) and X, we set Ex.= {f E If(x)l <- l} and Cx (f C(X) If(x)l < l}, holding Ex
and Cx for their polar sets in the topololical dui spaces of E and C(X), repectiv,Jy. E i cll,,d

separating if for each x, y X, ,, y, there is some f E such that f(x)., f(y). For each X, x will

denote the linear form of (C(X))’ (E’) such that 6,,(f) -f(x) Vf C(X) (E). If A is a subset of (C(X))’. z is

called an extreme point of A if z ,x (l-,)y, with 0 , 1. x. y = A. implies that z. . y Given X.
is a double point of ] if there is some Yx I X such that f(x) f(Yx) "0 for every f E. We shall say is

an autodouble point if f(x) 0 for every f E, i. e. if is a double point and Yx x. If is not a double

point, x is called a single point. If E is separating and x is a double point then Yx is unique, there

being at most only one autodouble point Clearly. there are no double points if E contains the constant

functions.

LEMMA. Let E be a separating linear subspace of C(X). For each X, +-bx are the only extreme

points of Exe.
o ---’E’.E)PROOF. Clearly the 6(E’)-closed convex cover of F-- (&x. -x) is contained in Ex and if q)

there must be some some f E such that q(f) and If(x)l I, q Ex. On the other hand Ex" has

some extreme point, since it is weakly compact, and it will be contained in F, [5, S25.1 (6)] Hence x
o

are the only extreme points of Ex
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PIOPOSITION. Let E be a separating subspace of C(X) and p a pointwise contractive projection of

C(X) onto E Then for each X, the transpose linear mapping p" of p satisfies

i) p’(6x) 0 if is an autodouble point

ii) p’(5x) =5x if is not an autodouble point

PROOF. i) For each f C(X), p’Bx(f) Bx(pf) (pf)(x) 0 since pf E. Hence p’(Bx 0
o

ii) Let E(x).= {q) Cx q)lE f)x) which, by Krein-Millman’s theorem, coincides with the closed

convex cover of its extreme points Now p’f)x E() since for each g Cx, Ip’f)x(g)l 16x(Pg)l
I Ig(x)l 1, and for each f E, p*)x(f) )x(pf) x(f) Besides, each extreme point of E() is an

@ o
extreme point ofCx since if q)san extreme point ofE(x)and q)=(xu (l-o)v’, u’, v" Cx then 6x

oeIE xu’lE, (l-(x)v’l., where u’lE, vl. Ex. So. 6x u’l. v’l, and u’, v" belong to E() and

coincide with q) Therefore, by Proposition 1, q) =o:6x with 1 1. As x is not autodouble, there is some

f E such that 0 f(x) Bx(f) which, takin into account that e E(), takes the same value as q)(f)

(XBx(f) =(xf(x) Hence (x and P"f)x
From this Proposition it follows that if z is an autodouble point, then z is tn isolated point since if

x is the function identically one on ], (pl]{)(x) x(plx) (p6x)(l x) Bx(lX) for each . z. and
(plx)(z) =0, Moreover, for each , z the equation f(z) fly) 0 Vf E has no solution since plx E
and no point z is a double point. Consequently,
’THEOREM 1. Let E be a separating subspace of C(X) and p a pointwise contractive projection of

onto E. Then
i) If for each x X there is some f E such that f{x) 0. every point of I is single.
ii) If there is some X such that f() 0 for etch f E, is the only double point of X, Moreover

is isolated and, clearly, autodouble.

THEOREM 2. A locally convex topological vector space E is isomorphic to the range of a pointvise

contractive projection in C(X) if and only if E is isomorphic to either C(X) or some Cz(X) (f

f(z) O),zI.

PROOF. Assume E is separating. If each point X is single, pf(z) x(pf) p’x(f) =x(f) f(z) for

every f C(X) So f pf E. On the other hand, if there exists some double point z. E is contained in

Cz(X). But for each f Cz(X), pf(z) 0 and pf(x) f(x) for x, z. If E is not separating, we are able to

form the quotient by identifying those points which are not separated by E and the same conclusion

yields.
Conversely, ifE is isomorphic to some Cz(X), then the mapping p C(X)-+ z(X) defined by p(f)

where fz(s) "f(x) for , z and fz(z) 0, is pointwise contractive and pf f for each f Cz(X)
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