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ABSTRACT. This paper proves Nachbin-type extension theorems for infinitely many functions

on a topological space equipped with a preorder.
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1. INTRODUCTION.
The well-known extension theorem of Nachbin [i, p. 36] gves conditions under which a real-

valued continuous order-homomorphism defined on a closed subset of a normally preordered

space E can be extended to a real-valued continuous order homomorphism on the whole space.

In the particular case in which the preorder on the space is the discrete order, the Nachbin

extension theorem reduces to the Urysohn-Tietze extension theorem on normal spaces.

The objective of this paper is to study the following variant of the extension problem
considered by Nachbin. Suppose that instead of a single real-valued continuous order

homomorphism, one has a collection F= {fi)iEl of real-valued continuous order

monomorphisms, where fi is defined on a closed subset o of a preordered topological space E.

Then the problem is to find a real-vlued continuous order-monomorphism y on the whole space

/ that is an order-extension of each order monomorphism y in the collection F. In this paper,

we give sufficient conditions for the existence of such a ’universal’ order-extension.

A special case of the problem studied in this paper arises in mathematical economics in the

context of the Euclidean distance approach used by Arrow and "I-Iahn [2] to construct a

continuous order monomorphism on a convex subset X of Rn equipped with a total preorder.
The Arrow-Hahn method [2, pp. 82-87] consists of taking a point x0 and then by defining the

’utility’ of z to be the Euclidean distance from z0 to the upper section of x. This Arrow-Hahn

function can be shown to be continuous under certain conditions. In this way, one is given a

collection of continuous order monomorphisms {yz:x D} defined on the upper sections of the

points x in D. Now the problem is to ’construct’ a continuous order monomorphism I on the

whole space x. It should be observed that the problem is not merely to show the existence of a

continuous order monomorphism since, in the finite-dimensional Arrow-Hahn context, this can be

deduced concisely from general topological theorems such as Eilenberg’s theorem ([3] or Corollary
1 of [4]). The problem is to somehow ’construct’ the function f as an order-extension of the

functions Ix for x in D. See Mehta [5,6] for further discussion of the Arrow-Hahn theorem.

For some recent work on the separation and extension theorems of Nachbin in preordered

topological spaces the reader is referred to Herden [7,8].
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2. PRELIMINARIES.
Let E be a set. A preorder < on E is a reflexive and transitive binary relation on E. A

preordered set is a set equipped with a preorder. A preorder _< on E gives rise to two other

binary relations on E as follows. If z, y g then z I if and only if t _< and I _< z. The relation

is an equivalence relation. If z, y E then < if and only if _< y and not y < z. The relation

< is irreflexive and transitive.

A preorder < is said to be an order if it is antisymmetric. A preorder _< is said to be total

if for every two elements z, g either _< y or y _< z.

A subset X of a preordered set g is said to be decreasing if b X, a _< b imply that a X.

Each subset X of E determines, in a unique manner, a decreasing set d(X) which is the smallest

one among the decreasing sets containing X. Dually, one defines the concepts of an increaaing set

and the smallest increasing set i(x) containing a given subset x.
Let E be a totally preordered set. Consider the following collection of subsets of E:

(1) (a,b)

(2) (a, b0] {z E:a < z < b) if b0 is the last element of E;

(3) [a0,b) {z E:ao < z < b} if a0 is the first element of E.

Then this collection of subsets of E is a basis for a topology on E called <-order topology.
Let E be a topological space equipped with a preorder _<. Each subset x of E determines

uniquely a closed decreasing set D(X) which is the smallest among the closed decreasing sets

containing x. Analogously, we define the concept of the smallest closed increasing set l(X)

containing a given subset X. If A and B are two subsets of g we write A < B to indicate that

D(A)nI(B)-.
Let E be a topological space equipped with a preorder _<. The preorder _< is said to be

continuous if d(y) (z E:z _< y}, the lower section of y, and i(y) {z E:y _< z}, the upper section

of y, are closed in E for every y E. The preorder is said to be strongly continuous if d(X) and

i(X) are closed in E for every closed subset X of E.

A topological space E equipped with a preorder _< is said to be nominally preordered if for

every two disjoint closed subsets F0 and F of E, F0 being decreasing and F increasing, there
exist two disjoint open subsets A0 and A such that A0 contains F0 and is decresing and A

contains F and is increasing.
Let E and E2 be two preordered sets. A function ] on E to E2. is said to be an order

homamorphism (or isotone) if z,1 E and z _< imply that y(z)_< l(v). A function y on E to E2
is said to be an order monomorphism if it is an order homomorphism and z < u implies that

f(=) < f().
Let E,H be two preordered sets and F a subset of E. Let :F--,// be an order

monomorphism. Then an order monomorphism f:E-lt is said to be an order extension of 0 if it

satisfies the following conditions:

(i) 0(a) < 0(b) and a,b F imply that f(a) <_ f(b)
(ii) (a) < g(b) and a,b F imply that f(a) < l(b).
3. ORDER EXTENSION OF ORDER MONOMORPHISMS.

The following fundamental theorem on the extension of an order homomorphism is due to

Nachbin [1, p. 36].
(Nachbin’s Extension Theorem) Let E be a normally preordered space F C_ E a closed subset and

! a bounded real-valued function which is continuous and isotone on F. We shall indicate by

A(r) the set of points
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where is a real number. Then in order that the function/" may be extended to E in such a way

as to become a bounded, continuous and isotone real function on E it is necessary and sufficient

that < r" implies A(r) < B(r’).
We now use Nachbin’s extension theorem to prove the following theorem on extensions of

order monomorphisms.

THEOREM 1. Let E be a T topological space equipped with a preorder < such that the

following conditions are satisfied:

(i) E is normally preordered;

(ii) The preorder < is strongly continuous;

(iii) For each z e E, the set {a e E:a < x} is open in E;

(iv) F {Dn}n= is a countable family of closed increasing subsets of E such that for each

n 1,2,. there exists a real-valued continuous order-monomorphism In defined on Dn;
(v) There exists a countable and topologically dense subset Z {Zn}n= of/ with the property
that n e Dn for all n.

Then there exists a real-valued continuous order monomorphism /’ on E that is an order

extension of fn for each positive integer n.

PROOF. By hypothesis, for each n 1,2,... there exists a real-valued continuous order

.monomorphism In on Dn. Since the extended real line is order homeomorphic to [0,1], we may

assume without loss of generality that for each positive integer n, fn: Dn--.[0,1].
We prove next that for each n 1,2,. the conditions of Nachbin’s extension theorem [9,

p.36] are satisfied for the function In. To this end, let r,r" be two real numbers such that r < r’.
Define An(r) {. e Dn: In(Z) <- r} and Bn(r" {z e Dn: In(Z) >= r’}. We claim that

D(An(r))NI(Bn(r’)) b for every positive integer n.

We prove first that d(An(r))tqi(Bn(r))=tk for every positive integer n. Let m be a fixed

positive integer. If either Am(r or Bm(r" is empty the result holds. So we may assume that

Am(r and Bin(r" are nonempty. Now suppose that d(Am(r))t’li(Brn(r’))eb. Then

z e d(Am(r))f3i(Bm(r’)) for some z e E. Since z e d(Am(r)) there exists a e Am(r) such that z < a.

Similarly, there exists be Bin(r" such that b<z. Since a e Am(r and be Brn(r’) we have

frn(a) <- r < r" <= .fm(b). On the other hand, b < z and z < a imply that b < a by transitivity of the

preorder. Therefore, Ira(b)<= Ira(a) because /’m is an order homomorphism. This contradiction

proves that for every positive n,d(An(r))Cli(Bn(r’))= .
Now the preorder < is strongly continuous. This implies that d(An(r)) is a closed decreasing

set in E and i(Bn(r’)) is a closed increasing set in E for every positive integer n. Therefore,

D(An(r)) C d(An(r)) and I(Bn(r’)) C i(Bn(r’)). Hence, O(An(r))OI(Bn(r’))= for all n.

Thus all the conditions of Nachbin’s extension theorem [1, p.36] are satisfied and we may

conclude that there exists a real-valued continuous order homomorphic extension t/n of In to E.

Clearly, we may assume that gn:E[O,2-n].
Define /’:ER by f()= gn() for z e E. Clearly, f is a real-valued continuous order

homomorphism on E.

To prove that I is an order monomorphism let z, y be two elements in E with z < y. Suppose
first that E has no least element. This implies that the set {a e E:a < z} is nonempty. It is open

by condition (iii). Since g is dense in E there exists a positive integer n such that zn belongs to

{ae E:a < z}. Furthermore since gn is an order monomorphism on the increasing set Dn and

zn e Dn, we have gn() < gn(Y)" Hence, f() < I(t).

Suppose now that E has a least element 0. We may assume that there is no positive integer
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n such that O~zn because in that case there is nothing to be proved. If eO<x the set

{a . E:a < x} is nonempty and open. Then arguing as before we have ’(x) < f(v). If x 0 the set

{a c= E:a < y} is nonempty and open. Therefore, it contains an element n of z. Again, without

loss of generality, we may assume that 0 < zn < !t. Since n is an order homomorphism on E we

have en(eO) -< en(zn). Now because go is an order monomorphism on the increasing set Dn we have

9n(Zn) < gn(Y)" Hence, gn(X) 9n(eo) <= gn(Zn) < gn(Y)- This implies that l(z) < l(y).

We have proved that for all z,y in E such that z < y we have l()< l(y). Consequently, )" is

a continuous order monomorphism on E. Finally, it is clear that I is an order extension of In for

all n. This completes the proof of the theorem, q.e.d.
REMARK 1. It is worth observing that in a compact ordered space the preorder is

necessarily strongly continuous [1, p.44].
REMARK 2. The strong continuity condition has been used in [9] to prove generalizations

of Katetov’s theorem on the interpolation of a continuous function between semi-continuous

functions. For further applications of this condition the reader is referred to [10, 11]. A related

condition has been used in the theory of order compactifications [12, 13, 14].
Another important special case of the preceding theorem occurs when E is a totally

preordered set with the order topology. Under these conditions, the preorder is strongly
continuous as we now prove.

PROPOSITION 1. Let E be a set, _< a total preorder on E and assume that E has the <
order topology. Then the preorder is strongly continuous.

PROOF. Let K be a closed subset of E. We claim that d(K) is closed. If d(K) is not closed

there exists a net {zk, k E D} in d(K) that converges to z fd(K). This implies that z K.

Therefore, there exists an open set v such that z E V and V n K because K is closed. Since E

has the order topology we may conclude that there is a basis element B such z B C V. We have

to consider the following three cases:

1. z . B (a,b)

2. z E B (a, b0]
3. z B [a0,b
Observe, in the first two cases, that a < ZkO for some k0 E D because the net {zk, k D} converges
to z. Since Zk-o " d(K), Zko <_ v for some v K. Now because the preorder is total either z _< t, or

v < z. If z < v then z d(K) because v E K. Since z d(K) by hypothesis, we may conclude that
v < z. Hence, we have a < < v < z. This implies that v v which is contradiction becausezk0
Vf3K=.

It remains to consider the third case. So suppose that z B [a0,). If a0 < z < then we are

in the case just considered above. So let z a0. Since B is an open set there exists k such that

Zkl G [a0,b). This implies that a0 < zkl because zk . d(K) and z . d(K). Hence, a0 z < Zkl _< , for
some v E K since Zkl G d(K). Therefore, z d(K) wich is a contradiction.

We have proved that in all cases, K closed in E implies that d(K) is also closed. Similarly,
we prove that i(K) is closed. Therefore, the preorder < is strongly continuous, q.e.d.

Suppose now that (E,t) is a topological space and < is a continuous total preorder on E.

Since is, in general, finer than the order topology, the above method of proof does not work.

However, a simple direct argument based on the Gluing Lemma of topology may be used instead

as we now prove.

THEOREM 2. Let E be a topological space equipped with a total preorder < such that the

following conditions are satisfied:
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(i) The preorder < is continuous;

(ii) F {Dn}n=l is a countable family of closed increasing subsets of E such that for each

n 1, 2,. there exists a real-valued continuous order-monomorphism/’n defined on Dn;
(iii) There exists a countable and topologically dense subset Z {Zn}= of E with the property
that n Dn for all n.

Then there exists a real-valued continuous order monomorphism j’ on E that is an order

extension of In for each positive integer n.

PROOF. Without loss of generality, we may assume that for all n, .fn: Dn.-.[O, ]. Let. m be

an arbitrary but fixed positive integer. We want to show that there exists a real-valued

continuous homomorphism am on E such that am(r)=/’re(z) for all z 6 Dm.
To this end, we claim that either there exists some point Um E such that i(ym)= Dm or

E\Dm is closed. So suppose that i(a)# Dm for all a 6 E. We need to prove that E\Dm is closed.

If E\Dm is not closed there exists a net {Zd:d D} in E\Dm that converges to z 6 Dm. Since

i(z)//: Dm there exists v Dm such that v<z because the preorder _< is total. The set

{a E:v < a} is increasing, open (because the preorder is continuous) and contains z. Therefore,
there exists do such that dO _< d implies that zd {a g:v < a} c Dm. This contradiction proves

that E\Dm is closed, and completes the proof of the claim.

To show that there is a continuous order-homomorphism am on E extending f, we have to

consider the following cases. Suppose first that E\Dm is closed. Define a real-valued function gm

on E by

am(Z) fro(z) if z /Dm

0 if z q E\Dm
Since both Dm and E\Dm are closed, the Gluing Lemma [15, pp.14-15] implies that am is

continuous. Clearly, am is an order-homomorphism on E.

Suppose now that for some Ym E, Dm =i(ym)" Clearly, Ym q Din" Define a real-valued

function am on E by

am(Z) fro(z) if z fi i(ym)

fm(Ym) if z d(Om)
Observe that for all z,y Dm such that z~o we have fro(z)= fro(Y) because fm is an order

homomorphism. Therefore, for all z d(ym)fli(ym), we have fro(z)= fro(Y)" Consequently, the

Gluing Lemma again implies that gm is continuous. Clearly, gm is an order homomorphism on g.

We have proved that for each n= 1,2,... there exists a rel-valued continuous order

homomorphism gn on E such that gn(z)= fn(Z) for all z Dn. We may assume without loss of

generality that gn: E-,[0, 2 hi.
Finally, observe that sets of the form {a E:a < z} are open in E for each z g because the

preorder is continuous and total. Hence, condition (iii) of Theorem 1 is satisfied. Arguing as in

the last part of Theorem 1, we may conclude the proof of the theorem, q.e.d.
REMARK 3. It should be noted that the conditions of Theorem 2 imply that g is normally

preordered [4, Proposition 1]. On the other hand, the assumption of strong continuity is not

needed because the preorder is total.
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