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ABSTRAC’T. Let r be a Fuchsian group acting on the upper half-plane U and having signature

{, ,, 0; , ,..., ,; -+ (- >0.

Let T(F) be the Temhmfiller space of r. Then there exists a vector bundle (T(F)) of rank

3-3 + n over T(F) whose fibre over a point e T(F) representing F is the space of bounded

quratic differentials B2(Ft) for Fr Let Hom(F,G) be the set of dl homomorphisms from r into

the Mbius group G.

For a given (t,)6(T(F)) we get equivalence cls of projective structures d a

conjugacy class of a homomorphism x e Horn(F, G). Therefore there is a well defined map

: (T(r))--om(r,

@ is cMled the monodromy map. We prove that the monromy mp is

hommorphism. The ce n=O gives the previously known result by Ele, HejhM

Hubbd.
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1. INTRODUCTION.
Let r be a finitely generated Fuchsian group acting on the upper half plane U such that U/F

is a Riemann surface of finite genus p with a finite number of possible ptmctures and raznification

points, and with a finite number of possible analytic boundary curves m. Let {Zl, z2,- ., z,} be

the set of points on U/F that are either punctures or ramification points, let ,j be the

ramification index of r-l(zj), where

: u.-,u/r

is the natural projection map, and we set ui= for punctures. Then the sequence

{p,n,m,t,l,t,2,..- ,tn} is called the signature of the group r.
In this paper, we consider r to be a Fuchsian group acting on the upper half-plane U and

having signature {p, n, O, u1, u2,..., un}; 2p-2 + (1-) > 0.
3=1Let T(F) be the Teichmfiller space of r. Then there exists a vector bundle (T(F)) of rank

3p-3 +, over T(F) whose fibre over a point representing F is the space of bounded quadratic
differentials B2(Ft) for Ft. Let Hom(F,G) be the set of all homomorphisms from r into the

Moebius group a.
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For a given (t,)E(T(I’)) we get an equivalence class of projective structures and a

conjugacy class of a homomorphism - 6 Hom(F,G). Therefore there is a well defined map
,: ’(T(r))-,no,,,(r, a)/G.

,I, is called the monodromy map. We prove that the monodromy map is a holomorphic local

homeomorphism.

The case 0 gives the previously known result by Earle, Hejhal and Hubbard. Fairing [6],
Gallo and Porter [7] have similar results for n > 0. The monodromy map restricted on each fibre

is known to be injective by Kra [11]. As a generalization of this result for a Fuchsian group r
with signature {p, n, m, v 1, u2,..., Un}; n >0, m > 0, author has proven a uniqueness theorem in

[15]. A similar result has been proven by Gallo and Porter [8].
In Section I, we discuss some well known interesting properties of Moebius transformations

and with their help, we find the set of regular points in Hom(F,G). This technical result is needed

to prove the main result in Section II. In Section II, we prove that the monodromy map is a

holomorphic local homeomorphism.

SECTION I. Let A 1, B1, A2, B2,..., Ap, Bp, C1, C2,...Cn be a fixed set of generators of r
satisfying the relations

p n

H [Ai’Bi] H Cj=I andc.=I, j=m+l,...n,
i=1 j=l

where [Ai, Bi] A B A/-1 B/-1 and C1, C2,..., Cm are the parabolic generators and Cm+ 1’

Cm + 2’ "Cn are elliptic generators with periods m + 1’ Um+ 2’ "’ Un, respectively.
A homomorphism x 6 Hom(l’,G) is completely determined by 2p + n Moebius transformations

x(Ai)=$
X(Bi) T

x(cj) wj,
1, 2, ., m and j m + 1, m + 2, -, n satisfying the relations

H [Si’Ti] H Wj=I and Wj.=t, j=m+l, m+2,...n.
=1 j=l

Let P be the set of all parabolic transformations and Ej be the set of all elliptic

transformations with a fixed multiplier K; Kt’J 1, j m+ 1, m+2,--., n. Let Hom(F,G)
consist of homomorphisms preserving parabolic transformations and the multipliers of the elliptic
transformations. Then for x 6 Horn’(F, G),

x(Cj) Wj C P,j 1,2,-- .,m

Wj ft. Ej, j m+ 1, m+2, .,n.

Hence {S1,T1,S2,T2,...,Sp, Tp, W1,W2,...,Wn} is a point in G2PxpmxEm+lEm+2
xEn. We denote {S1,T1,...,Sp, Tp, W1,...,Wn} by {Si, Ti, Wj} and G2PxpmxEm+ x... xEn
by G2p, n for short.

Following lemma of Gardiner and Kra [9], we show that p and each Ej are two-dimensional

submanifolds of G. We also determine the tangent space of p or Ej at any point.

At this point, let us introduce the adjoint representation u uA of SL(2,C) in l, the Lie

algebra of SL(2,C) (that is the tangent space of SL(2,C) at identity I) which is defined by

uA=AdA(u), u, ASL(2,C) where AdA: is the differential at I of the map

SL(2, C) X-A- X A SL(2, C).
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Explicitly,

uA=lim A-letUA-I-A-louoA_
t-,o

A parabolic transformation with fixed point z # oo can be written as an element of $L(2, C) as

(1+ pz pr2 /; p # 0, which is unique up to multiplication by -1 [14]. We consider the natural
p pz/

map

:SL(2,C) G

which is two-to-one and unramified.

Ech parabolic transformation corresponds to two matrices in SL(2, C), one of which has trace

2 and the other has trace -2. Thus - l(p) consists of two disjoint sets P + and P-, where

P + theset of elements in SL(2,C) with trace 2\{I},
P- the set of elements in SL(2,C) with trace 2\{ I}.

We prove the following lemma which has been proven by Gardiner and Kra in [9] in a slightly
different mmner. We shall adopt the calculations from [9].

LEMMA 1.1. Let f:SL(2,C)-,C be the mapping defined by

f(,,) t, .
If u ,er (dr) (B) with B P +, then there exists a v {I such that

PROOF. f is holomorphic. Let B P +. Then there exists an A SL(2, C) such that

We consider the function

SL(2, C) B F A- HA SL(2, C).

Since F is a holomorphic isomorphism,
u ker d(f F) (B) (dF)(B) u ker (dr) (FB).

Morver, for v , B SL(2, C), A SL(2, C)
u=vB-youA=vBA-vA=v--]BA-vl; Vl= vA,

d
(F) () ()= A.

f(eJ)-()
(F) () ()= tS

lira

f{(l +at + pct

tim cf af I

2 + pct- 2
lira
t-,o

pc.

(a ba} We check that there exists a v=(a" b.Thus if u ker(df)(B),c 0; that is, u
0 c" -a 0 such

that
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We choose c’= --,a’=, and b" arbitrarily. This completes the proof of the lemma.

(1 ) we notice that forum0,In the above calculation for (dl)(B) with B
0

(d/) (B) (u)=

Since p #0, c #0, (df) (B) is surjective. Again the differential of the map

z $L(2,C), ASL(2,C) is surjective. Hence (df) (B) is surjective for any Be P+. Therefore, df
has maximal rank at each point of P + that is, P + is the set of regular points of f in f 1(2) and
hence P+ is a submanifold of SL(2,C) of dimension 2 by the implicit function theorem.

Moreover, for B e P +

TB(P + ker (df) (B).

Hence from the above Lemma we conclude that

TB(P +) ={ue{}; u=vB-vforsomeveO}.

Similarly, we can show that P- is a submanifold of SL(2, C) of dimension 2 and for B e P-,

TB(P {u F. O; u vB- v for some v (; 0}.

Since P + and P- project to P in G, P is a submanifold of G of dimension 2. Thus we prove the

following:
(3OROLLARY 1. P is a submanifold of G of dimension 2. Moreover, for e P,

Te(P {u . O; u vg- v for some v E 0}.

An elliptic transformation e with the fixed points and v can be written as

0)- t2 _-,g(,)-v

where k2 is the multiplier of g, k2# 1. Choosing a positive square root of k2, we write k2 -----/"
Then solving the above equation we can write in the matrix form

which is unique up to multiplication by -1 [14]. If k2=- 1, the above expression for e is

symmetric in x and v.
Let E be the set of all elliptic transformations with the multip.lier k2. Each elliptic

transformation in E corresponds to two matrices in SL(2, C), one of which has trae k + l/k, and

the other has trace -(k + l/k). Hence if k2# -1, -I(E) consists of two disjoint sets E + and

E-, where

E + the set of elements in SL(2,C) with trace k + 1]k,

E- the set of elements in SL(2,C) with trace -(k +
If k2=- 1,-I(E) is just one set; we denote it by E, where E= the set of elements in

SL(2,C) with trace zero. As before, we have the following:
LIgMMA 1.2. Let y:SL(2,C) (7 be the mapping defined by

f(:)

If u ker(df)(B), with B E +, then there exists a v 0 such that

PROOF. The idea of the proof is same as it is in the Lemma 1.1. Without loss of generality
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we assume that B --(o ,/ok, Then for u -( ) j.

0 + at bt 0

(dr) (B) (u)= lira
--,o

iim
ft\l/kct l/k,(1-at)

=ti,,
(t+ /t)+.t(t- /k,)+o(t)-(k, + /t)

t--,0

.(k,- /t).

Hence if u ker(df)(B),a 0; that is, u =(0 b)0" We check that there exists a v =(a’c. ") E J such

that

0 0 b’(1/k2 1) We chse ,c’=SinceB=
l/k

B lvB-v=
c’(k2-1) 0

bitrily. This completes the prf of the lemma.

Once again, we observe that (df)(B) is surjective for B e E +, since a 0 d k2 1. Hence at

eh point of E + df h maximM rk, and hence E + l- l(k + 1/k) is a submifold of SL(2,C)
of dimension 2. Morver,

TZ(S +

HeDce
TB(E+)= {u;u=vB-v for some v6O}.

Similly, we c prove the se results for E- well for E. When k2 1, E + d E-

e submifolds of SL(2, C). Since E + d E- project to E in G, E is a submifold of G. When

k2 I,E is a submifold of SL(2,C). Hence E E/ I is a submifold of G. Thus we prove

the following.
COROLLARY 2. E is a submifold of G of dimension 2. Morver, for # E,

T#(E) {u O;u v- v for me v e }.

We intruce a function F on G2p, n defined by
p n

f(Si, Ti, Wj)= [Si, Ti], Wj
i=1 j=l

This is a complex analytic function from G2p, n into G. The subset

R {(Si, Ti, Wj) G2p, n;F(Si, Ti, Wj) I}

is then a complex analytic subvariety of G2p, n; the mapping

1tom*(r,G) 9 X--,(x(Ai),x(Bi),x(Cj)) G2p, n
identifies llom*(r,G) with this subvariety and thus establishes a complex structure on Born*(r,G).

G2p, n is a complex analytic manifold of dimension 6p+ 2n. We show that the subset of

Horn*(r,G) consisting of those homomorphisms x for which x(r) are non-elementary is the set of

regular points in R. The case when n=0 has been discussed by Gunning in [10]. Following
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Gunning we can find dxF at X (Si, Ti, Wj)E G2p, n. The tangent space of G2p, n at the point x is

denoted by Tx(G2p, ). Then

Tx(G2p, n

_
]2p x Hl]Wj,j=

where wj Twj(P) for j 1,2,-..,m and Ow’=J Tw.l’(gl)J for j m + 1,...,n.

Let (Xl,X2,...,Xp, Y1,Y2,...,Yp, Z1,Z2,...,Zn), denoted by (Xi, Yi, Zj) for short, be a point in

}2P I }w

Then by definition, SietXi, T,tri, Wj etZj)- l(Si, Ti, Wj)
X Y Z liradX-, i’ i’ ,=

In other words, dx](Xi, Yi, gj) is the ccient of in the Taylor expsion of

F(SietXi, Tt+tri,W3tgJ).
After a long cMculation we find that

p p

dxF(Xi, Yi, gj) AdS Tg [Sk, tkl((l_ AdSi)Yi_(l_ AdTi)Xi)
i=1 k=i+l

+ Ad Wt(Zj)
j= t=j+

which is essentiMly se the expression obtned in Gunning [10] except the second term.

We defie tion of r on follows:

r d r, we define

’ "x(/= x(l(l.

We rewrite the above expression in the following way,

p p n

dxF(Xi, Yi’Zj)= E(Xi’(Bi--I)+Yi(I--Ai))’A-IB-1 H tAt’Otl+ Zj- Ct-
i=1 k=i+l j=l k=j+l

We want to check when dxF is surjective. To do that we follow Ahlfor’s method in ([2], 5). We

introduce notations R0 I and

Ri A1B1A- 1B- 1... AiBiA- 1B-
Rp+ j RpC1C2. .Cj

Ri- 1B 1R
RiA 1g-ll

Cj=Rp+jCjRp+j 5ip, jn)

Then i, i, j e generators of . Morver,
p p n

dxF(Xi, Yi, Zj)= Xi.AIR_ll(I-i)+ Yi.BIRI(i-I)+ Zj.Rj.
i=1 i=1 j=l

We supse that the map

dxF:2P xjlj
i t sjecfive. hen there exists a nonero line funetionM v* on thet vishes on he

ilat v.(-I) d v.(B-l) for M1 ve, it nihilates v.(B-I)=v.(B-I)+v.(-I).
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Since {]i, i, j} is a system of generators of F, it follows that v* annihilates v.(A-I) for all V

and all A F.

We assume first that there is a loxodromic element x(A), A fi F. We may take

r(k2- 1) 0

Therefore, v* must multiple of the line functionM that maps any v on its first entry.

follows that the first entry of v.(B-l) is zero for MI v and

(0 1)=d(O 0) Theneget==O. hisistrueonlyd apply the above result on v

when (B) is a multiple of or 1/.
Next, we sume that there is a pabolic element (), e r. We take

(r ,) (-r 2/’r-r ) Therefore, v* must be a multiple of the linearThen forv= J,v.(A-l)= 0
functional that maps any on its third entry. It follows that v. (B- I) has zero third entry for all

az + , and apply the above resultvO, all Be F. As before, we assume that x(B)(z)= "rz+
on

i’=( 01 00)and( 00 01)" WegetT=0,2= .1 Thisistrueonlywhenx(B)(z)=z+’;ffO.
Finally, we assume that there is no loxodromic or parabolic element in x(r); that is, all

elements of X(F) are elliptic. Hence x(r) is finite.

Combining all these we conclude that dxF is surjective if none of the following statements

holds.

(i) x(r) is finite;
1.(ii) all elements of x(r) are multiples of z or ,

(iii) all elements of x(r) are of the form z--.z +, # o.
Thus we have the following.
PROPOSITION. Let R0 be the subset of Hom*(F,G) consisting of those homomorphisms

for which x(r) is nonelementary; that is, x(r) is not a finite extension of an Abelian group. Then

/I:0 is a complex manifold of dimension 6t, + 2n 3.

REMARK. It follows from condition (iii) that the above proposition also holds when x(r) is

some of the elementary groups.

SECTION 2.

DEFINITION. Let a group r act discontinuously on a domain t c ’. We denote by

the complex vector space of quadratic differentials for I’; Q2(fl, r) consists of functions

holomorphic on f satisfying ( 7)7’2 for all 7 q r.
We denote by B2(f,r the subspace of Q2(fl, I’) consisting of bounded quadratic differentials

for r; B2(f,r consists of Q2(ft, r) for which

where A is the Poincar6 metric on .
DEFINITION. A ddormtion of r is a pair (f,x), where f is a holomorphic local

homeomorphism of U into " and x is a homomorphism of I’ into G, the group of all Moebius

transformations, satisfying

f 7 x(7) f for all 3’ r.
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The local homeomorphism f also describes a projective structure on the Riemann surface

U/F (provided r is torsion free). We also call f a projective structure on u/r. We call two

projective structures f and equivalent if Aol for some Moebius transformation A. There is a

one-to-one correspondence between the set of equivalence classes of projective structures on u/r

and the pace of quadratic differentials Q2(U,F).
DEFINITION. Let w be a quasiconformal selfmap of U, normalized by the conditions

w(0) 0,w(1)= 1, and w(o)= . w is compatible with the group F if w -ow-1 is conformal for

every "r F. Two such quasi-conformal self maps of U, w and w2 are equivalent if they coincide

on the real line.

The Tdchmfiller space T(F) of F is the set of equivalence classes [w] of normalized quasi-

conformal self maps of U which are r-compatible.
Let l,o(U denote the complex Banach space of bounded measurable functions It on U. let

Lc(U)I be its open unit ball. Let Lcx(U,F be the subspace of L(U) consisting of satisfying

It(’r(z))-/(z)/-/(z) it(z) for all r and z in U.

Let Loo(U,F)I Loo(U)lt3Lcx)(U,F). For every q.c. self map w of U, its Beltrami coefficient,

t Wz/ttz Leo(U) 1- Every e Loo(U) determines a unique normalized self map w of U satisfying

wz Itw, Ahlfors [1]. We denote this w by wg. It is easy to check that wit is r-compatible if and

oly if It Loo(U,F). T(F) can be endowed with the quotient topology associated with the

surjective map It--,[w]. T(F) with this topology, can be realized as a bounded open set in

B2(U*,F). Since it is an open set in B2(U*,F), T(F) is a complex manifold modeled on B2(U*,F
and has dimension 3P-3 + n when F is of type (p,,,0).

We take It Loo(U,F)I and extend it to be zero on the rest of C’. There exists a unique q.c.

self-map w of @ fixing 0,1,oo which has Beltrami coefficient , on U and which is conformal on V*,
Ahlfors [1]. We denote this w by wt’.wgl R, hence w’lu" depends only on [wit], Ahlfors [1].
Therefore, w/(U) depends only on [w/]. We denote wit(U) by D(t), where t= [wit] T(F). The

boundary of wit(U) is wit(). The group wgF(wg)-1 fixes this boundary which is a Jordan curve.

Hence the group is quasi-Fuchsian. We denote wgF(wg) by F(t). The Ber’ fibre trpace F(t)

over T(r) is the set of pairs (t,z) with T(r), z e D(t).
For each T(F), there exists a quasi-Fuchsian group F(t) and a Jordan domain D(t)= wit(U).

To each t, we associate the complex vector space B2(D(t),F(t)) of bounded quadratic differentials

for r(t). We form (T(r))= U B2(D(t),F(t)) as a fibre space over T(r). (T(r)) forms a

complex vector bundle of ranl e_ T(r)
3p-3+ n over T(F). We denote the points of (T(F)) by (t,(t))

where (t) B2(D(t),r(t)).
Each (t) B2(D(t),F(t)) determines a holomorphic local homeomorphism

f(z,t):D(t)-,C

such that the Schwarzian derivative of f,S! (f"/f’)’- 1/2(f"/f’)2, is . We notice that (i)
s(! vt) sl, for vte r(t), and hence (ii) ] 7 I for some G. Both (i) and (ii) follow

from properties of Schwarzian derivatives. The map "r determines a homomorphism o from

F(t) into (.

Let 8it:-r--.7 be the isomorphism of r into r(t) induced by w. We take o eg" Thus

we get a homomorphism of r into G induced by f w and we have

f w "r x(’r) f w for all r. (2.1)

For A G, f and A f have the same Schwarzian derivative O. Since replacing f by A f has the
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effect of replacing x by AxA- 1, we have a well defined map
4": (T(r))-ltomtr, G)/G.

We call 4, the monodromy map. We prove the following:
THEOREM 1. The monodromy map is a holomorphic local homeomorphism.
We want to study the local behavior of 4,. For this purpose we fix the origin O T(F) so

that D(to)= U and F(t0)= F. We consider the vector space w of the functions #:C--,C satisfying

the following conditions.

#(z) (Ira z)2 #(z), z U, for some B2(u,r

0, outside U.

Let W be the-subset of w consisting of with oo < I. For each q w there exists a unique

quasi-conformal self map w u of , fixing 0,1,oo, and such that w has the Beltrami coefficient

in U. Moreover, wV(U) is a Jordan domain and w#I’(wt) is a quasi-Fuchsian group fixing

There exists a neighborhood W0 of zero in W which provides a local coordinate at o in such a

way that for every in a sufficiently small neighborhood of 0, D(t) is the Jordan domain

and r(t) is the quasi-Fuschian group wtF(wt) for some W0. We choose W0 so small that

point z0 . w#(U) for all t W0 whenever z0 U.

Now for #W0 and _B2(wt(U),w#F(w#)-l), we consider the Schwarzian differential

equation
f.r’ s/= ,/,-/ ,Tr . (2.)

Let 9 9 be the unique solution of (2.2) satisfying

#(z0) 0, #’(z0) 1,#"(z0) 0. (2.3)

Any function I satisfying $l @ is given by I A for some A G. Hence for W0 and

4, B2(wP(U),uJ,rw 1), we have from (2.1).
A o g wP(7(z)) X(7) A g wP(z) for all 7 e r, e u.
We take h A g w. Then h is a C-function satisfying h V X(V) h for all 7 r. Since

# depends on and w/’ depends on the Beltrami coefficient ,h is a function of A, and &. Hence
so is x. We denote the map

G x (T(F)) 9 (A,p,c)--.X Hom(r,G)

by 4,*. We shall show that 4,* is holomorphic. To prove this we need some Lemmas which have

been proved already in Earle [5]. These Lemmas do not need adjustment for the parabolic or

elliptic elements in r. Hence we state these lemmas without proofs.

LEMMA 2.1 (Earle [5]). Let A,, be functions of a complex variable r such that

A(z,r) f.G,p(z,r). W0 and b(z,r) is in B2(u(U),wtrw#-l) for all r; Irl < e.

We assume that

A(z, r) Ao(z + r4(z) + o(r)

p(z, r) r(z) + o(r) (2.4)

(z, ) 0(z) + (z) + o(), I < .
where Ao(z A(z,O),bo(Z)= (z,0) and the dot denotes the derivative with respect to r at r =0.

We set p0(z) p(z,0) 0.

Then h has a power series expansion
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h(z,r)=ho(z)+ r]a(z)+o(r), for Irl < (2.5)
Ohwhere ho(z h(z,0) and/(z) 3--1 r =0"

LEMMA 2.2 (Eaxle I51).
Let h*=. Thenh*=0===0.

With the help0of" Lemma 2.1 it can be proved that depends holomorphically on A,I and . To
show this we need the following:

LEMMA 2.3 (Earle [51). Let a,u, satisfy (2.4) and let h satisfy (2.5). Then x(7),’t F, has

the following power series expansion

c(’r) x0(7) + r(7) + o(r) for r < (2.6)

and for all "r q r where

c(7)(h0(z) (h0oT)’(z)(h*(-r)7’(z)- h*(z)), U. (2.7)

The Lemma 2.3 has the following

COROLLARY 4. c(7) 0 for "r r if and only if h* 0 in U.

We need some adjustments to prove the corollary for the presence of parabolic elements. We
include the proof.

PROOF. In (2.7) we use h0o7 x0(7) h0 and we get

(7)(ho(z)) hto(z)(h,(7(z))7,(z)- h*(z)).XO(7)’(ho(z))

Since (7)(z)
x0(7),(z

is a polynomial and ho(U is open, (7)= 0 if h* 0 in U.

Now we assume that (7) 0 for all 7 r. Then h*(7(z))7’(z)- h*(z), for all 7 r,z u. Hence
h* is a COO( 1) differential for I’. We shall show that h* is actually holomorphic in U under the

assumption, that (7)=0 for all 7 I’. We intend to apply Stoke’s theorem on U/F. Since u/r
has punctures, Stoke’s theorem cannot be applied directly. We follow Bers [3] to handle this

situation. U/F has m punctures. Thus one can construct a fundamental domain D for I"

containing m cusped regions belonging to punctures.
We draw in each cusped region a smooth curve Cs, 1,2,. .,m so that (i) C joins two

points s and on tgD which are identified by an element of I’, and (ii) Cs and C,, do not meet,

for s s. In this manner we obtain a relatively compact subset D* of D which is bounded by

part of #D and the curves C1, C2,... Cm.
For any B2(U,r),h* is a C-differential for I’.

Let be arbitrary. By Stoke’s theorem we have

If f sa fD* d(h*ckdz)= oqD* h*ckdz Cs h*cb dz;

the integrals along two identified sides on cgD cancel each other, since h*Cdz is I’-invariant. The

integral J" J" D.d(h*dz)- Dd(h*dz) whenever s-,as; as is the fixed point of the parabolic

transformation As identifying s and . Hence we can show that

d(h*cbdz) o

by showing that I.im
%-’as J Csh bdz 0, for 1,2, .,m.

It suffices to assume that 1,As(z z + and a o. Then the cusped region belonging to oo is

the region
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Uc={zEC;0<Rez< l,lmz>c}
Hence

Jf h**dz j[ h*(z + ib)dx, (2.S)

where (1 ib;b > c, hence + ,b. Since E B2(U, F), $(z + 1)= e(z) which implies that $(z) has a

Fourier series expansion

$( ane2xinz, z U.

Since sup {(lmz)21(z)l < o,an 0 for n < 0. Hence (z) ane2rinz.
,EU n=l

Therefore,

(x / ib) < Const.e 2rb. (2.9)

Since h lowp, l0{z)@ + and hence
h*=+f* (2.10)

where is given by the following integral (see Ahlfors [1], chap. V)

2xi U (( z)’(( 1)
It is known (Kra [13], chap. IV)that

@(z) O( log z as
and hence

fi(x + ib) < const.(z2 +b2)2! log(z2 +b2) as b--oo. (2.11)

Finally, we shall find a growth condition on I*. For this purpose, we study the behavior of I* in

the cusped region Uc.

From (2.1) it follows that

f o wp A (wP) x(A1 f. (2.12)

Let A w A (wit) 1. Then A is parabolic, since A is parabolic. Since w fixes 0,1 and

oo, Ar fixes co, and takes 0 to 1.

Hence At(z)= z+ for all r. Moreover, :(A1) is parabolic if A is parabolic by Kra [12]. Let

Br(z where Pr is the fixed point of x(A1); and hence 0.z Pr’
Then

BroX(A1) oB71(z)=z+br, r#0.

We replace f by Br f so that x(A1) is replaced by Br x(A1) B- 1, emd we get from (2.12)

BrofoAr=BroX(A1) OB71oBrof.
We take F Br f and check that since h 0.

From (2.13), we have

(2.13)

FoAr(z)=BroX(A1) oB71 oF(z);

F(z + l) F(z)+br, z

_
wP(V).

Differentiating with respect to we get F’(z + 1)= F’(z).
Therefore, F’(z) is periodic in z and has a Fourier series expansion

r’(z,) ()2iz, e U(U). (2.14)
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Now we follow the arguments of Kra [13] keeping in mind that F is a function in two variables

and r. Thus from (2.14) we get

F’(z, r) ao(r + E ak(r)e2rikz’ where ao(r br # O. (2.15)
k=l

Moreover,
ro + F’(z, r)dz, andbr ao(r) o

Integrating (2.15) we get

"o + 2kiZF,(z,r)dz, zo
_
wP(U).at(r)= "0

=at(r)F(z,r) brz + E ck(r)e2ikz’ ok(r) 2-’k-("
k=l

br and ct(r are holomorphic in r, hence they have power series expansions in r which are

uniformly convergent in Ae {r; Irl < }. Thus from (2.16), taking derivative with respect to r

at r 0, we get

We know that

’(z) + E ke2tikz’ z . U.
k=l

Br o x(A1) B- l(z) z +br; that is,

a x(A)()= a()+b,.

Differentiating with respect to r at r 0 we get

ffO(Xo(A1))(z)(A1) l(z) + 4 4,

since 0. Thus (A1) 0 implies that b 0, and we have

.() e2"z, v.
k=l

From (2.16), we also get

Hence

Fo(Z) Ft(z,O) b0 + ck(O e2"ikz, z . U.

’(z) ke2rikZ(bo + ck(O)e2gikz)_F-) k=l
E dke2rikz"
k=l

Hence we have

f*(z) F*(z) E dke2rikz’ z U.

From (2.17) it follows that

We recall that in the integral (2.8)

f*(z + ib) < const.e 2wb.

From (2.10), (2.11) and (2.18) we conclude that

h*(z + ib)(z + ib) < const.(e -4tb .4-
(z2 /b2)lg(z2 / b2))-*0

e-r’z o as b--.

(2.17)

(2.18)
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and hence

Thus we have

hm I Cl h*&dz Ibim I h*(x + ib)(x + ib) O.
0

I Id(h*Sdz) 0; that is,
D

IIh*Sdz^d =0.

D

From (2.10) we know that h* =/,, hence we have

I I Ad 0 for B2(u,r)ally

D

Since/t E w for # E w0, we have that

(2.19)

h(z) (Ira z)2 O(Z),Z C U, for some S0 C B2(U,F).

We now take S0 in (2.19). Then we have

I I (Im z)2 tbo(Z)12dz A d =0

D

b0 0=:,h 0=:,fi O=h* 0.

Hence h* is holomorphic in u. Furthermore, h* f*. Thus h* is a (- 1) differential for r.

Following Kra [13], we define

Ordph*
red ordph* -p for p 6 U,

Fpl is the order of the stabilizer of p.)

and for each cusp a of F, red ordash*= r if the Fourier series expansion of h* at is

h*(z) E ak e2rikz’ ar 0’ V.

Since h* is holomorphic in U, red ordph* >_ 0 if p E U. From (2.17)
red ordash*> for s 1,2,...,m.

Thus red ordph* > 0, where DO is a fundamental set in for r. But
pEDo

j=lPqD0

by Era [13], and it is negative since 210- 2 + (1 -) > 0.
3=1

This contradiction leads to the conclusion that h* =0. This completes the proof of the

corollary.
PROOF OF THE THEOREM. For an arbitrary point T(F), there exists a map taking

to a given point o T(r). This map is a holomorphic homeomorphism by Bets [4]. Hence it is

sufficient to prove the theorem in a neighborhood of the origin O T(F).

We have noticed earlier that, in a neighborhood of 0, ( is induced by *. * is holomorphic

by the Lemma 2.3. The Lemma 2.2 and the Corollary of the Lemma 2.3 together imply that the

differential of * is injective. It is known that x preserves the parabolic elements and the



708 J.D. SENGUPTA

multipliers of the elliptic elements in F. Moreover, X(F) is nonelementary by Kra [12]. Hence the

image x of q,* is a manifold point in Hom(F,G) by the Theorem 1. Since G x(T(F)) and Hom(F,G)

have the same dimension 10 + 2n-3, o* is a local homeomorphism. Replacing (l,t,) by (A,t,) in

G x (T(F)) has the effect of conjugating x by A. Hence we conclude that O is holomorphic and a

local homeomorphism in a neighborhood of 0. This completes the proof.
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