CR-HYPERSURFACES OF THE SIX-DIMENSIONAL SPHERE

M.A. BASHIR

Mathematics Department, College of Science King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia

(Received July 23, 1992)

ABSTRACT. We proved that there does not exist a proper CR-hypersurface of S^6 with parallel second fundamental form. As a result of this we showed that S^6 does not admit a proper CR-totally umbilical hypersurface. We also proved that an Einstein proper CR-hypersurface of S^6 is an extrinsic sphere.

 KEY WORDS AND PHRASES. Nearly Kaehler manifold, CR-submanifold, six-dimensional sphere, Einstein hypersurface totally umbilical.
 1991 AMS SUBJECT CLASSIFICATION CODES. 53C40, 53C55.

1. INTRODUCTION.

It is known that of all the Euclidean spheres S^2 and S^6 admit the almost complex structure of which S^2 is complex and S^6 is not. It is also known that S^6 is an almost hermitian manifold which is nearly Kaehler but not Kaehler [4], that is, the almost complex structure is not parallel with respect to the Riemannian connection on S^6 . Among all submanifolds of an almost Hermitian manifold, there are three typical classes; one is the class of holomorphic submanifold, one is the class of totally real submanifolds and the third is the class of *CR*-submanifolds. This last class was introduced by Bejancu [1]. Let (\overline{M}, J, g) be an almost Hermitian manifold with almost Hermitian structure (J,g) and M be a Riemannian submanifold of \overline{M} . The M is called a *CR*-submanifold of \overline{M} if there exists a *CR*-holomorphic distribution D, i.e., JD = D on M such that its orthogonal complement D^{\perp} is totally real, i.e., $JD^{\perp} c \nu$ where ν is the normal bundle over M in \overline{M} . A *CR*-submanifold is called proper if neither D = 0, nor $D^{\perp} = 0$. The three classes of submanifolds of S^6 , including *CR*-submanifolds, have been studied by several authors [2], [3], [5]. In this paper, we consider *CR*-hypersurfaces of S^6 . We obtain the following results:

THEOREM 1. There does not exist a proper CR-hypersurface of S^6 with parallel second fundamental form.

THEOREM 2. S^6 does not admit a proper CR-totally umbilical hypersurface.

THEOREM 3. Let M be an Einstein proper CR-hypersurface of S^6 , then M is an extrinsic sphere.

PRELIMINARIES. Let (\overline{M},g) be a Riemannian manifold and M be a Riemannian submanifold of \overline{M} . Let ∇ (resp. $\overline{\nabla}$) be the Riemannian connection on M (resp. \overline{M}) and R (resp. \overline{R}) be the curvature tensor of M (resp. \overline{M}). Denote by h the second fundamental form of M in \overline{M} . Then the Gauss formula and the Weingarten formula are given respectively by

$$\vec{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{1.1}$$

$$\overline{\nabla}_{X}N = -A_{N}X + \overline{\nabla}_{X}N \qquad X, Y \in \mathfrak{S}(M)$$

$$N \in \nu$$
(1.2)

where $-A_N X$ (resp. ∇X^N) denotes the tantial part (resp. normal part) of ∇X^N . The tangential component $A_N X$ is related to the second fundamental form by

$$g(h(X,Y),N) = g(A_N X,Y), \qquad X,Y \in \mathfrak{S}(M).$$

The Gauss equation is given by

$$g(R(X,Y)Z,W) = g(\bar{R}(X,Y)Z,W) + g(h(X,W),h(Y,Z)) - g(h(X,Z),h(Y,W))$$
(1.3)

The Codazzi equation is

where

$$g(\overline{R}(X,Y)Z,N) = g((\overline{\nabla}_X h)(Y,Z) - (\overline{\nabla}_Y h)(X,Z),N)$$

$$(\overline{\nabla}_X h)(Y,Z) = \stackrel{\downarrow}{\nabla}_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$
(1.4)

If $(e_i)i = 1, 2, \dots, \eta$ is a frame field for M, then the Ricci curvature S of M is given by

$$S(X,Y) = \sum_{i=1}^{n} R(e_i, X, Y, e_i).$$

The submanifold M is called an Einstein manifold if S(X,Y) = cg(X,Y) for some constant c and any $X,Y \in \mathfrak{S}(M)$. M is said to be totally umbilical if h(X,Y) = g(X,Y)H where H is the mean curvature vector defined by $H = \frac{1}{n}$ trace h.

M is called an extrinsic sphere if $\vec{\nabla}_X H = 0$ for any $X \in \mathfrak{L}(M)$. The *CR*-submanifold *M* is called a *CR*-product submanifold if it is locally the Riemannian product of a holomorphic submanifold and a totally real submanifold. Sekigawa [6] proved that in S^6 there does not exist any *CR*-product submanifolds.

2. PROOF OF THE MAIN RESULTS.

PROOF OF THEOREM 1. Since the second fundamental form is parallel we have $(\nabla_W A)(V) = 0$ or $\nabla_W AV = A \nabla_W V$ for any $V, W \in \mathfrak{S}(M)$. If V is an eigenvector of A with corresponding eigenvalue β , i.e., $AV = \beta V$, then from the equation $\nabla_W(AV) = A \nabla_W V$ we get $\beta \nabla_W V = A \nabla_W V$. This means that $\nabla_W V$ is an eigenvector corresponding to eigenvalue β whenever V is. If T is the eigenspace of β then $\nabla_W T c T$.

Since *M* is a proper *CR*-hypersurface of S^6 , we can take $\{E_1, JE_1, E_2, JE_2, \xi\}$ as an orthonormal frame field for *TM* where $E_1, E_2 \in D$ and $\xi \in D^{\perp}$. Also since the normal bundle is 1-dimensional we assume that the frame $\{E_1, JE_1, E_2, JE_2, \xi\}$ diagonalizes *A*. So let $AE_1 = \alpha_1 E_1$, $AJE_1 = \overline{\alpha}_1 JE_1, AE_2 = \alpha_2 E_2, AJE_2 = \overline{\alpha}_2 JE_2$ and $A\xi = \beta\xi$. We consider the two cases for the eigenvalues $\alpha_i, \overline{\alpha}_i, \beta$ i = 1, 2.

CASE 1: $\alpha_i \neq \beta$ and $\overline{\alpha}_i \neq \beta$ for all i = 1, 2.

In this case we have $g(\nabla_W \xi, E_i) = g(\nabla_W \xi, JE_i) = 0$ for all $W \in \mathfrak{L}(M)$. This gives $\nabla_W \xi \in D^{\perp}$, i.e., the distribution D^{\perp} is parallel. Since $\nabla_W \xi \in D$ we get $\nabla_W \xi = 0$. This last equation with $g(\xi, X) = 0$ for $X \in D$ gives $\nabla_W X \in D$, i.e., the distribution D is also parallel. This implies that M is a CR-product, a contradiction, since S^6 does not admit any CR-product submanifold [6].

CASE 2: $\alpha_{i_0} = \beta$ or $\overline{\alpha}_{i_0} = \beta$ for some i_0 .

Without loss of generality let us assume that $\alpha_i = \beta$ for some i_o . Then the space T spanned by $\{E_{i_o},\xi\}$ is the eigenspace of eigenvalue $\beta = \alpha_{i_o}$. We then have $\nabla_W T c T$. In particular $\nabla_{E_i} \xi = aE_i + b\xi$ for some functions a and b. Since $g(\nabla_{E_i} \xi, \xi) = 0$, we get $\nabla_{E_i} \xi = aE_i$. Also using the equation $\overline{\nabla}_{E_i} E_{i_o} = J \overline{\nabla}_{E_i} E_{i_o}$ with the help of equations (1.1) and (1.2) and the fact that $h \in JD^{\perp}$ we get $g(\nabla_{E_i} \xi) = 0$. From which we get $g(\nabla_{E_i} \xi, E_i) = 0$, i.e., $\nabla_{E_i} \xi = 0$. Now using this last equation and the fact that $\nabla_{\xi} \xi = 0$, we get

$$R(E_{i_o},\xi)\xi = \nabla_{E_{i_o}} \nabla_{\xi}\xi - \nabla_{\xi} \nabla_{E_{i_o}}\xi - \nabla_{[E_{i_o},\xi]}\xi = \bigvee_{\xi} E_{i_o}^{\xi},$$

But $\nabla_{\xi} E_{i_o} = c E_{i_o} + d\xi = 0$ since $g(\nabla_{\xi} E_{i_o}, E_{i_o}) = 0$. $g(\nabla_{\xi} E_{i_o}, \xi) = -g(\nabla_{\xi} \xi, E_{i_o}) = 0$. So $R(E_{i_o}, \xi)\xi = 0$. However from Gauss equation we obtain $g(R(E_{i_o}, \xi)\xi, E_{i_o}) = c + \beta^2 > 0$ which is a contradiction. This finishes the proof of Theorem 1.

PROOF OF THEOREM 2. Since *M* is totally umbilical we have h(X,Y) = g(X,Y)H for any $X, Y \in \mathfrak{S}(M)$. Using this in Codazzi equation (1.4) we get $g(R(X,Y)Z,N) = g(g(Y,Z) \stackrel{\downarrow}{\nabla}_X H - g(X,Z) \stackrel{\downarrow}{\nabla}_Y H, N)$. Since the ambient space S^6 is of constant curvature we have $g(g(Y,Z) \stackrel{\downarrow}{\nabla}_X H - g(X,Z) \stackrel{\downarrow}{\nabla}_Y H, N) = 0, X, Y, Z \in \mathfrak{S}(M)$. Now for any $X \in \mathfrak{S}(M)$, choose Y such that g(Y,X) = 0 and let Z = Y. Then the above equation gives $\stackrel{\downarrow}{\nabla}_X H = 0$, i.e., H is parallel. Using a frame field $(E_i), 1 \leq i \leq 5$ with E_5 in D^{\perp} and the rest in D, one can write $H = \gamma J E_5$ for some constant γ . Also the equation h(X,Y) = g(X,Y)H gives $h(E_i,E_i) = \gamma J E_5$, and $h(E_i,E_j) = 0$ for $i \neq j$. Note that in this case

$$(\overline{\nabla}_{E_i}h)(E_j, E_k) = \overline{\nabla}_{E_i}h(E_j, E_k) - h(\nabla_{E_i}E_j, E_k) - h(E_j, \nabla_{E_i}E_k)$$
$$= E_ig(E_j, E_k)H = 0 \text{ for all } i, j.$$

where we have used the equation h(X,Y) = g(X,Y)H in the second equality. This means that M has parallel second fundamental form. Then using Theorem 1 we obtain Theorem 2.

PROOF OF THEOREM 3. Let $\{X, Y, JX, JY, Z\}$ be an orthonormal frame for TM where $X, Y \in D$ and $Z \in D^{\perp}$. Since M is a hypersurface we know that the above frame diagonalizes A. Therefore one can write

and

$$h(Z,Z) = \alpha JZ, h(X,X) = \beta JZ, h(JX,JX) = \gamma JZ, h(Y,Y) = \delta JZ, h(JY,JY) = \eta JZ$$
$$h(Z,X) = h(Z,JX) = h(Z,Y) = h(Z,JY) = h(X,JX) = h(X,Y) = h(X,JY) = h(Y,JY) = 0$$

where $\alpha, \beta, \gamma, \delta, \eta$ are smooth functions on *M*. Then using Guass equation (1.3) we get

$$S(Z,Z) = R(X,Z,Z,X) + R(JX,Z,Z,JX) + R(Y,Z,Z,Y) + R(JY,Z,Z,JX) = 4c + \alpha(\beta + \gamma + \delta + \eta)$$

Similarly

$$S(X, X) = 4c + \beta(\alpha + \gamma + \delta + \eta)$$

$$S(JX, JX) = 4c + \gamma(\alpha + \beta + \delta + \eta)$$

$$S(Y, Y) = 4c + \delta(\alpha + \beta + \gamma + \eta)$$

$$S(JY, JY) = 4c + \eta(\alpha + \beta + \delta + \eta)$$

Since M is Einstein we have

$$S(Z,Z) = S(X,X) = S(JX,JX) = S(Y,Y) = S(JY,JY) = constant$$

i.e.,

$$\alpha(\beta + \gamma + \delta + \eta) = \beta(\alpha + \gamma + \delta + \eta) = \gamma(\alpha + \beta + \delta + \eta) = \delta(\alpha + \beta + \gamma + \eta) = \eta(\alpha + \beta + \gamma + \delta) = const.$$
(i)
(ii)
(iii)
(iv)
(v)

We shall show that $\alpha, \beta, \gamma, \delta$ and η are constants. From the above equations we have:

$$\begin{aligned} &\alpha(\gamma+\delta+\eta)=\beta(\gamma+\delta+\eta), \qquad \beta(\alpha+\delta+\eta)=\gamma(\alpha+\delta+\eta) \\ &\gamma(\alpha+\beta+\eta)=\delta(\alpha+\beta+\eta), \qquad \delta(\alpha+\beta+\gamma)=\eta(\alpha+\beta+\gamma) \end{aligned}$$

We seek all solutions for this system. One obvious solution is $\alpha = \beta = \gamma = \delta = \eta = const$. The other possible solutions are the following cases:

- (a) $\gamma + \delta + \eta = \alpha + \delta + \eta = \alpha + \beta + \eta = \alpha + \beta + \gamma = 0$ In this case we have $\alpha = \gamma = \eta = const.$ and $\delta = \beta$ considering (i) and (iv) with $\delta = \beta$ we get $\delta = \beta = \alpha = const.$ or $\delta = \beta = -2\alpha = const.$ So for this case $\alpha, \beta, \gamma, \delta, \eta$ are constants.
- (b) $\alpha = \beta, \alpha + \delta + \eta = \alpha + \beta + \eta = \alpha + \beta + \gamma = 0$, i.e., $\alpha = \beta = \delta$ and $\eta = \gamma$. Using (ii) and (v) with $\alpha = \beta = \delta$ we get $\eta = \gamma = \alpha = const.$ or $\eta = \gamma = -2\alpha = const.$, i.e., $\alpha, \beta, \gamma, \delta, \eta$ are constants.
- (c) $\alpha = \beta = \gamma, \alpha + \beta + \eta = \alpha + \beta + \gamma = 0$, i.e., $\alpha = \beta = \gamma = \eta$. Using (i) and (iv) with this last equation we get $\alpha = \beta = \gamma = \eta = \delta = const$. (Note that in case $\alpha = \beta = \gamma = \delta = 0$, then *M* is totally geodesic and hence $\delta = 0$).
- (d) $\alpha = \beta = \gamma = \delta, \alpha + \beta + \gamma = 0$, i.e., $\alpha = \beta = \gamma = \delta = 0$. Following the note in (c) we have $\eta = 0$.

Therefore in all cases $\alpha = \beta = \gamma = \delta = \eta = const$. We conclude that $H = \alpha JZ$ where α is constant and thus $\nabla \frac{1}{V} H = 0$ for any $V \in \mathfrak{S}(M)$, i.e., M is an extrinsic sphere.

REFERENCES

- 1. BEJANCU, A., CR-submanifolds of a Kaehlerian manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- DILLEN, F.; VERSTRADEN, L. & VRANCKEN, L., On almost complex surfaces of the nearly Kaehler 6-sphere II, <u>Kodai Math. J. 10</u> (1978), 261-271.
- 3. EJIRI, N., Totally real submanifolds in 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
- 4. FUKAMI, T. & ISHIHARA, S., Almost Hermitian structure on S⁶, <u>Tohoku Math. J. 7</u> (1955), 151-156.
- GRAY, A., Almost complex submanifolds of six sphere, <u>Proc. Amer. Math. Soc. 20</u> (1969), 277-279.
- SEKIGAWA, K., Some CR-submanifolds in a 6-dimensional sphere, <u>Tensor N.S. 41</u> (1984), 13-19.