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ABSTRACT. Several statements on quasi-ideals of semirings are given in this paper, where these

semirings may have an absorbing element O or not. In Section 2 we characterize regular semirings

and regular elements of semi-rings using quasi-ideals (cf. Thms. 2.1, 2.2 and 2.7). In Section 3

we deal with (O-)minimal and canonical quasi-ideals. In particular, if the considered semiring

S is semiprime or quasi-reflexive, we present criterions which allow to decide easily whether an

(O-)minimal quasi-ideal of S is canonical (cf. Thms. 3.4 and 3.8). If S is an arbitrary semiring,

we prove that for (O-)minimal left and right ideals L and R of S the product (RL C_ L N R is

either {O} or a canonical quasi-ideal of S (Whm. 3.9). Moreover, for each canonical quasi-ideal Q

of a semiring S and each element a S, Qa is either {O} or again a canonical quasi-ideal of S

(Tam. 3.11), and the product (Q1Q21 of canonical quasi-ideals Q1, Q2 of s is either {O} or again

a canonical quasi-ideal of S’ (Thm. 3.12). Corresponding results to those given here for semirings

are mostly known as well for rings as for semigroups, but often proved by different methods.

All proofs of our paper, however, apply simultaneously to semirings, rings and semigroups (cf.

Convention 1.1), and we also formulate our results in a unified way for these three cases. The only

exceptions are statements on semirings and semigroups without an absorbing element O, which

cannot have corresponding statements on rings since each ring has its zero as an absorbing element.

KEY WORDS AND PHRASES. Quasi-ideals, regular elements, re,ular semirings, (O-)minimal

quasi-ideals, canonical quasi-ideals.

1992 AMS SUBJECT CLASSIFICATION CODES. 16 Y 60, 12 K 10, 16 D 80, 20 M 12.

1. PRELIMINARIES.

An algebra S (S, +,.) is called a semiring, if[ (S, +) and (S,.) are arbitrary semigroups

connected by ring-like distributivity. If there is an element o S[e S] satisfying o+ a a+ o a

[’ea ae a] for all a S, it is called the" zero [the identity of S. If there is an element O S

satisfying Oa aO 0 for all a S, it is called the absorbing el.ement of S. Note that there

are semirings with a zero o satisfying o e or oo -# o, whereas O + O O trivially holds for each

semiring with an absorbing element O. A semiring with elements o and O which coincide is said

to have an absorbing zero o O; among others, each ring is an example for such a semiring. Let

/ be the set of positive integers and @ :# X, Y C S. We introduce the notion
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I’--1

for the subsemigroup of (S, +) generated by X. Deviating from the usual notion in ring thcory,

we define XY for semirings (and hence for rings) (S, +, .) in the same way as for semigroups (S, .)

by

(1.2)

The product of subsets mostly used in ring theory can then be expressed by (XY) according to

<xr> 1,, I, e x, , e Y, e v}.

Clearly, we write e.g. xY and <xY> instead of {x}Y and <{x}Y>. We have to use both notions (1.2)
and (1.3) extensively, including the following equations concerning (1.3) which are easily checked

for all $ # X,Y,Z C_ S:

(1.)

(.)

(.)

<X U Y> <(X> U <Y>>
<XY> (<X>Y> <X<Y>>

Whereas in general only XY C_ (XY> is true, clearly zY <zY> and Yx (Yx> hold for all z E S

and all Y C_ S satisfying Y (Y>.
Our main interest is with quasi-ideals of semirings, and we also need left, right and two-sided

ideals. Since these concepts differ for semirings and rings, we recall them in a way pointing out

this difference: A subset # L C_ S of a (semi)ring (S, +, .) is called a left ideal of (S, +,-) iff L is

a sub(semi)group of (S, +) satisfying SL C_ L. The latter states that L is a left ideal of (S, .), and

for an additive sub(semi)group L of a (semi)ring S, clearly, S:L C_ L and (SL) C_ L are equivalent.

Right ideals and two-sided ideals of (q, +, .) are defined analogously. Due to [3], 12, a subset

0 ://: C_ S of a (semi)ring (S, +, .) is called a quasi-ideal of (S, +, :), iff is a sub(semi)group

of (S, +) satisfying (SQ) f3 (QS) c_ 0. In this case the condition S f3 S C_ Q, stating that Q is

a quasi-ideal of the semigroup (S, .), leads to the concept of a weak quasi-ideal of the (semi)ring

(S, +, .), and such a weak quasi-ideal need not be a quasi-ideal (cf. [8], 2).

In general, if (S, +, .) is a ring, one may consider left, right, two-sided and quasi-ideals in the

ring-theoretical as well as in the semiring-theoretical meaning. Since each subgroup is all the more

a subsemigroup, each ring-theoretical ideal is a semiring-theoretical one. The converse holds e.g.

for rings with an identity, but not in general.

As already mentioned in the abstract, most of our results on semirings correspond to already
known statements on semigroups and on rings. Moreover, even in cases where those statements

have been proved for semigroups and for tings by completely different ideas, our proof for the

corresponding statement on semirings will apply also to semigroups and rings. So we want to

formulate our considerations in such a way, that they can be read for semirings as well as for

semigroups and rings (the latter of course for rings considered as rings and not as a special kind

of semirings). For this reason, we use the following



QUASI-IDEALS OF SEMIRINGS 49

CONVENTION 1.1. a) If S (S, +, .) is a ring, the terms left, right, two-sided or quasi-ideal

of S are used in the ring-theoretical meaning.

b) The notions (X), XY and (XY) have always the same meaning according to (1.1), (1.2) and

(1.3), regardless whether S (S, +,-) is a semiring or a ring. (This will cause no problems, since

in the ring-case (X) is a subgroup of (S, +), provided that -X C_ X holds.)

c) In the case that S (S,-) is a semigroup, one has to pay no attention to the brackets ().
In this context we remark, that each of our results on semirings provides automatically the

corresponding one on semigroups. The reason is that any semigroup (S,-) determines a semiring

(S, +, .) with respect to the left absorbing addition on S, defined by a + b a for all a, b E S, such

that each left, right, two-sided or quasi-ideal of (S,.) is an ideal of the same kind of (S, +, .), and

conversely.

The elementary properties given in the following two Lemmata are well known (cf. e.g. [3], 1-2
for rings and semigroups and [8], 1 for semirings).

LEMMA 1.2. Let S be a semiring, a ring or a semigroup.

a) Each one- or two-sided ideal of S is a quasi-ideal of S.

b) The intersection of any system of quasi-ideals of S is either empty or a quasi-ideal of S.

c) If L is a left and R a right ideal of S, then RL C_ (RL) C_ L gl R holds and the intersection

Q L gl R is a quasi-ideal of S.

d) For each :/: X C_ S, (SX> is a left ideal, (XS> a right ideal, (SXS> an ideal and (SX) f3 (XS>
a quasi-ideal of S.

e) Each quasi-ideal of a semiring, a ring or a semigroup S is a subsemiring, a subring or a sub-

semigroup of S respectively.

LEMMA 1.3. Let S be a semiring, a ring or a semigroup, L a left and R a right ideal of S

and consider element e e and f f2 of S. Then we have

eL L N eS, Re Se N R and Sf f3 eS eSf

and all three subsets are quasi-ideals of S.

For each -fi X C_ S we denote by (X)t, (X), (X)t and (X) the left, light, two-sided and

the quasi-ideal of S generated by X. We call them principle if they can be generated by one

element x and write then e.g. (X)q instead of ({X})q. The following lemma can be checked in a

straightforward manner.

LEMMA 1.4. Let S be a semiring, a ring or a semigroup.

a) For each } # X C_ S, additionally satisfying -X C_ X in the case that S is a ring, we have

(x), <x sx>, (x) <x u xs>,
(X), (X U SX U XS U SXS) and (X) (X U ((SX) t3 (XS))).

b) For the principle left, right and two-sided ideals generated by s E S we have

<()s> s d <S(),S> <SS>.
Further, a quasi-ideal Q of 5’ is said to have the intersection property, iff Q) L f3 R holds for

suitable left and right ideals L and R of S which clearly implies Q (Q)l c (Q),.. Whereas each

quasi-ideal of a semigroup (S, .) has the intersection property ([3], Prop. 2.6), an example due to

Clifford (published in [3], Expl. 2.1) shows that there are rings which contain quasi-ideals vithout
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the intersection property. Examples given by Weinert ([8], Prop. ‘5.2) show that there are even

O-minimal (cf. Section 3) quasi-ideals of a semiring (S, +, .) with absorbing element O, which do

not have the intersection property. Finally, a hi-ideal B of the (semi)ring (S, +,-) is defined

as a sub(semi)ring of (S, +,-) satisfying BSB C_ B and hence (BSB) C_ B. Note that BSB C_ B

states that the subsemigroup B of (S, .) is a hi-ideal of the semigroup (S, .). The following lemma

is again easy to check:

LEMMA 1.,5. Let S be a semiring, a ring or a semigroup and T a two-sided ideal of S. Then

each quasi-ideal Q of T is a bi-ideal of S. Especially each quasi-ideal Q of S is also a bi-ideal of S;
hence Q satisfies (QSQ) c_ Q.

2. QUASI-IDEALS AND REGULARITY

Let S be a semiring, a ring or a semigroup. Then an element s S is called regular in S iff

s

_
sSs holds, and S is called regular iff each element of S is regular in S. Note that an element

s of a semiring, a ring or a semigroup S is regular iff one of the following statements holds"

(2.1) There is an element x S satisfying xs e e, s se.

(2.1’) There is an element y S satisfying sy f f:, s fs.
(2.2) There is an element e e2 S satisfying (s)t Se Ss.

(2.2’) There is an element f f2 q S satisfying (s) fS sS.

Restricted to the special cases that ,5’ is a ring or a semigroup, most of the results of this section

can be found in [3], 9.
THEOREM 2.1. Let S be a semiring, a ring or a semigroup. Then the following conditions

are equivalent"

(1) 5’ is regular.

(2) Each left ideal L and each right ideal R of S satisfy (RL) L t3 R (which in fact implies

RL (RL) L t3 R).

(3) Each left ideal L and each right ideal R of S satisfy

) (L> L

b) (R2> R and

c) (RL) is a quasi-ideal of S.

(4) The set of all quasi-ideals of S is a regular semigroup with respect to the "product"

(5) Each quasi-ideal Q of S satisfies Q (QSQ).

Moreover, the tatements 3a) and 3b) imply that each quasi-ideal Q of S has the intersection

property since it satisfies Q (sQ)
PROOF. At first we prove the last statement. We apply 3a) to the left ideal (Q)t (Q u

of s generated by a quasi-ideal Q of S and obtain Q c_ (Q u SQ) ((Q u SQ> c__ (SQ>, where

the last inclusion is obvious. Similarly we get Q c_ (Q u Qs> ((Q u Qs>> c_ (QS) and therefore

Q c_ (SQ) (QS)

_
Q.

(1) = (2): The inclusion RL _C. (RL) C_ LgR holds by 5emma 1.2 c). On the other hand, for each

d e L R there exists an x S such that d dxd since S is regular. Now d R and xd SL C_ L

imply d RL.

(2) = (3): For a), let L be a left ideal of S and (L),. (L 0 LS) the right (in fact two-sided) ideal

of S generated by L. Then (2) implies
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L L n (L)r ((L)rL> ((L U LS>L> c_ (LL U LSL) (LL) c_ L.

The statement b) can be proved dually and (RL) L n R is a quasi-ideal by Lemma 1.2 c).
(3) = (4): At first the multiplication (1.3) is associative by (1.6). Let Q, and Q2 be quasi-idcals

of S. Then L (SQ, Q:) and R (QQ=S) are left and right ideals of S, hence 3a) and 3b) imply

S (S) and

(2.3)

(2.4)

(SQQ=) ((SQQ:>(SSQQ2)> (S(Q, Q2S>(SQQ2))

(Q,QS) ((QQSS>(QQS)) ((QQS)(SQQ)S).

Moreover, (RL). is a quasi-ideal of 5’ by 3c) and satisfies (SRL)n (RLS) (RL>, due to the last

statement of the theorem. So we obtain

(SQQ> n (Q,QS) (S(QQS)(SQ1Q:)) n ((QIQS>(SQ, Q2)S)

(SRL) n (RLS) (RL) ((QQS)(SQQ))

c_ (Q, Q2SQ) c_ (Q,Q),

the last step by Lemma 1.5. Hence (QQ2) is again a quasi-ideal of S, i.e. Q is a semigroup and

it remains to show that it is regular. Each quasi-ideal Q Q satisfies Q (SQ) n (QS), again by

the last statement of the theorem, and in a similar way as abovewe can conclude

Q (SQ> F] (QS> ((SQ)(SSQ)) n (<QSS)(QS))

<S<QS)<SQ))n (<QS><SQ)S) (<QS><SQ)) (QSQ).
Hence Q is regular in Q.

(4) => (5): For each quasi-ideal Q of S there exists a quasi-ideal X of S such that Q (QXQ) c_

(QSQ) c__ (SQ) (QS) c_ Q, hence Q (QSQ).
(5) (1): For each element s S the intersection (s) 6] (s)r is a quasi-ideal of S by Lemma 1.2 c).

Using (5) and Lemma 1.4 b) we conclude

c (), () (((), ())s((), n ())>

c_ (()rS()) (S(),) (S>

Hence each s S is regular in S.

For regular elements of a semiring, a ring or a semigroup S there is the following analogue of

Theorem 2.1"

THEOREM 2.2. The following statements about an element s of a semiring, a ring or a

semigroup S are equivalent:

(1) The element s is regular in 5’.

(2) The principle left ideal (s) and the principle right ideal (s)r of S satisfy

<(),(),) (s) n (),.

(3) The principle left ideal (s)t and the principle right ideal (s) of S satisfy

) (()) ()
b) <(s)) (s) and

c) ((s)r(s),) is a quasi-ideal of S.

(4) The principle quasi-ideal (s)q of S satisfies (s)q ((s)qS(s)q).
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PROOF. (1) => (3): For a) let s 6 S be regular in S. By (2.2) and (2.2’) we have (s)l Se

for some e e 6 S and (s) fS for some f f= 6 S. From (s), Se C_ (SeSe) ((s)>

,ve obtain <(s)> (s), since (s) C_ (s), is clear. The statement b) can be proved dually, and

((s)(s)) (fSSe) is a quasi-ideal of S by Lemma 1.3 since {fSS} is a right ideal of S.

(3) => (2)" From 3a) one obtains (s) ((s)} C_ (S(s)) Ss by Lemma 1.4 b), that is (s)! Ss.

Similarly 3b) yields (s) sS. Using again 3a) and 3b) one obtains (s) f (,) Ss sS

((Ss)3> V ((sS)a). Now ((s)r(s)t> (sSSs> is by 3c) a quasi-ideal of S. From this it follows

(SsSSs) (sSSsS) c_ <sSSs)= ((s)r(s),> and therefore

(), n () ((s)) n ((s?) c_ (sss> n <sss> c_ (()(),).

This proves (2), since the other inclusion is clear.

(2) (4)" Obviously we have ((s)qS(S)q) C_ (S(s)q)C ((s)qS) C__ (s)q. From (2) and Lemma 1.4 b)

it follows s 6 (s)t (s) ((s)(s)} C_ (S(s),) Ss, hence (s) Ss and similarly (s) sS. So

we obtain (s)q C_ (s), n (s) ((s)r(s),> (sSSs> C_

(4) ==> (1)" We have s e (s)q <(s)qS(s)q> C_ <(s),.S(s),) (sS(s),> sSs, the last steps again by

Lemma 1.4 b), so s is regular in S.
By the aid of Thm. 2.1, we obtain further properties of quasi-ideals in regular semirings, rings

and semigroups. In this context we need the following

LEMMA 2.3. Each two-sided ideal T of a regular semiring, ring or semigroup 5" is a regular

subsemiring, subring or subsemigroup of S.

PROOF. Each element s 6 T C_ S is regular in S, so there is an x 6 S such that s sxs

sx(sxs) s(xsx)s. Since xsx is an element of T, s is regular in T, too.

THEOREM 2.4. Let 5’ be a regular semiring, ring or semigroup. Then the following statements

are true:

a) Each quasi-ideal Q of 5" satisfies

Q L V] R (RL) withL=(Q)=(SQ) and R (Q) (QS>.

b) Each quasi-ideal Q of S satisfies (Q2>
c) Each bi-ideal B of S is a quasi-ideal of S.

d) Each bi-ideal B of a two-sided ideal T of S is a quasi-ideal of S.

With respect to b) we note, that the regularity of S does not imply Q (Q2>. Moreover, the

statement c) does not imply that S is regular.

PROOF. a) By Theorem 2.1 each quasi-ideal Q of S has the intersection property Q

(SQ> N (QS) (Q), N (Q)r L N R and condition (2) of Theorem 2.1 implies Q L R (RL).
b) For each quasi-ideal Q of S it follows by Theorem 2.1 (4), that (Q) is also a quasi-ideal of S and

that there is a quasi-ideal X of S such that

which yields (Q2) (Q3) since (Q) c_ (Q) is clear.

c) Since (SB> is a left ideal and (BS) is a right idea/of S, Theorem 2.1 (2) impnes (SB) c (BS)

(BSSB) c_ (BSB) c_ B, so B is a quasi-ideal of S.

d) By Lemma 2.3 the two-sided ideal T of S is a regular sub(semi)ring or subsemigroup of S. So

by part c) the bi-ideal B of T is a quasi-ideal of T, hence by Lemma 1.5 a bi-ideal of S and again

by part c) a quasi-ideal of S.

The last statements are proved by the following examples:
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EX:AMPLE 2.5. Let S M2,2(If) be the set of the (2,2)-matrices over K Z/(2). With

the usual multiplication (and addition) we consider S as a semigroup, as a semiring and as a ring.

Then, in all three cases, S is regular and

0)(000 0 01)}
is a quasi-ideal of S (in fact a canonical and hence an O-minimal one, cf. Section 3). Obviously,

onc has O # <O2)= {O}.
EXAMPLE 2.6. In the semiring S /N with the usual (commutative) operations each

subsemiring of S is an ideal and hence a quasi-ideal of S. Thus th,: s,’une holds for each bi-idcal

of S. However, only the elcnent 1 is regular in S. The corresponding statements hold for the

semigroup S =/N with respect to multiplication and for the ring S of integers.

Whereas the regularity of S does not imply that (Q2) Q holds for each quasi-ideal Q

of S as just stated, the converse implication is true. Hence the next theorem gives equivalcnt

characterizations for special classes of regular semirings, rings or semigroups:

THEOREM 2.7. The following conditions on a semiring, ring or semigroup .9 are equivalent:

(1) Each left ideal L and each right ideal R of S satisfy

(RL) L R C_ (LR>.

(2) The set Q of all quasi-ideals of S is an idempotent semigroup with respect to the "product"

(QQ).

(3) Each quasi-ideal Q of S satisfies Q (Q=).
PROOF. To prove (1) => (2) we state at first, that the equality of condition (1) is just the

condition (2) of Thm. 2.1, which yields that S is regular and that the set Q of all quasi-ideals of

S is a regular semigroup with respect to the product <QQ). So we only have to show that it is

in fact idempotent. We have Q (QSQ) for each quasi-ideal Q of S by condition (5) of Thin. 2.1

and of course (S> S for the left ideal S of S by condition (3) of Thin. 2.1. Combining this

we can conclude Q (QSQ) ((QSQ)(SS)(QSQ)) (QS(QSSQ)SQ) c_ <QS<SQQS)SQ)
((QSQ)(QSQ)) (Q>, where the inclusion follows from (1) since (SQ) and (QS) are left and

right ideals of S, respectively. This yields Q (Q) since the other inclusion is .clear, hence we

proved (2). The implication (2) => (3) is only a restriction. To prove (3) = (1) we use that by

Lemma 1.2 c) for each left ideal L and each right ideal R of S the inclusion (RL) C L N R holds

and the intersection L fh R is a quasi-ideal of S. So (3) implies L R ((L R)2) which yields

L C R C (RL) as well as L n R C. (LR).

3. (0-)MINIMAL AND CANONICAL QUASI-IDEALS

Whereas a ring always has an absorbing element O (namely its zero), the considered semi-

groups and semirings may have such an element or not. In particular, the absorbing element O of

a semiring S need not be a zero of S, but from O + O O it follows that {O} is a two-sided ideal

of S (and hence a quasi-ideal of S, cf. Lemma 1.2 a)) also in this case.

For a semiring, a ring or a semigroup S and each X C S we introduce

X’ ( X\{O} if S has an absorbing element O
X otherwise
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Let Q be a quasi-ideal of a semiring, a ring or a semigroup S. Then Q is called a minimal quasi-

i’dcal of S, iff S’ S holds and Q does not contain a quasi-ideal Q1 of S properly. Moreovcr, Q

is called 0- minimal, iff S’ C S and {0} C Q are satisfied and Q does not contain a quasi-ideal

Q1 :p {0} of S properly. For convenience, we use (O-)minimal when dealing with both cases

simultaneously. Analogously one defines (O-)minimal left-, right- and two-sided ideals of S. Note

that according to this definition a ring S can only have O-minimal quasi-ideals and no minimal

ones, which deviates again from the usual ring-theoretical terminology.

A quasi-ideal Q # {O} of a semiring, a ring or a semigroup S is called canonical iff

(3.1) Q L 3 R holds with suitable left and right ideals L and R of 5, and

(3.2) L and R can be chosen (O-)minimal.
We note that (3.1) implies Q (Q)t f) (Q)r and (3.2) means, that (Q)z and (Q)r axe (O-)minimal

(which conversely implies that Q is canonical).
In the following two theorems we collect known results concerning the relation between the

properties that a quasi-ideal Q is (O-)minimal or canonical. At first we assume that Q is canonical

and ask if it is also (O-)minimal:
THEOREM 3.1. Let S be a semiring, a ring or a semigroup. Then, for each (O-)minimal left

ideal L and (O-)minimal right ideal R the intersection Q L f3 R is an (O-)minimal quasi-ideal

of S or satisfies Q {O}.
Consequently, each canonical quasi-ideal Q of 5, is an (O-)minimal one.

This has been proved for semirings in [8], Prop. 4.3, for semigroups without an absorbing element

in [3], Thin. 5.1 and for semigroups with such an element O and for rings in [3], Thin. 6.1.

Secondly, we assume that a quasi-ideal Q is (O-)minimal and ask whether it is also canonical

or satisfies at least (3.1). Here we have to distinguish several cases:

THEOREM 3.2. a) Let S be a semiring or a semigroup without an absorbing element. Then

each minimal quasi-ideal is also a canonical quasi-ideal of S.

b) Let S be a semigroup with absorbing element O and Q an O-minimal quasi-ideal of S. Then Q

has at least the intersection property (3.1).
c) Let S be a semiring or a semigroup with absorbing element O or a ring and Q an O-minimal

quasi-ideal of S. Then either 02 equals {O} or (Q’, .) is a subgroup of (S, .). In the latter case,

Q satisfies (3.1) since Sz f3 zS Q holds for all z E Q’. In particular Q Se f eS eSe holds

with the identity e of (Q’, .). However, Q need not be canonical, since there are examples such

that even the left ideal Se and the right ideal eS of S generated by e E Q are not O-minimal.

We note that statement a) is proved for semirings in [8], Satz 4.7 and for semigroups in [3],
Thm. 5.1. Statement b) is part of Prop. 2.6 in [3]. The positive statements of c) can be obtained

for semirings by Satz 4.6 and Satz 4.5 of [8] and for semigroups and rings by Thm. 6.3, Cor.6.4

and Thm. 6.5 of [3]. Finally, Example 2.2 in [1] deals with the semigroup 5’ {O, e, a, b} for which

all products are O excepted e e, ea a and be b. It contains the O-minimal quasi-ideal

Q es’e {O, e}, but neither the left ideal Se nor the right ideal es, axe O-minimal. We show

that examples of this kind yield corresponding ones for rings and semirings:

EXAMPLE 3.3. Let 5, be a semigroup with above properties, satisfying in particular that the

O-minimal quasi-ideal Q consists of the two elements e e and O. Let A be the algebra over a

field F with O as its zero and the elements of 5,’ 5’\ {O} as a basis. Then eAe Fe is obviously

an O-minimal quasi-ideal of A, but neither the left ideal Ae D_ Se nor the right ideal eA D_ es" are
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O-minimal. If one replaces F by a commutative semifield H with an absorbing zero O (e.g. by

the semifield of non-negative rational numbers), the same holds for the resulting semiring .4. the

semialgebra A over H with S’ as a basis, el. [10], Def. 4.1.

In view of Theorem 3.2 one may ask for conditions on S which are necessary and sufficient such

that each O-minimal quasi-ideal of S is also a canonical one. To our knowledge, no conditions of

this kind are known. In the following we obtain complete answers in the eases that S is semiprime

or quasi-reflexive (el. Thm. 3.4 and Thm. 3.8). Both concepts are well known for a semigroup S

with an absorbing element O and for a ring S. For a semiring S with an absorbing element O we

define them in the same way, although O need not be the zero of S.

Let S be a semiring or semigroup with absorbing element O or a ring. Then S is called

semiprime iff one of the following three conditions (which are easily checked to be equivalent) is

satisfied:

(i) if T is a two-sided ideal of S such that (T2) C_ {O}, then T C_ {O};
(ii) if L is a left ideal of S such that (L2) C_ {O}, then L C_ {O};
(iii) if R is a right ideal of S such that (R2) C_ {O}, then R C_ {O}.

We recall in this context that {O} (O)t is a two-sided ideal of S in each of the three cases we

consider, which yields that the brackets in (i), (ii) and (iii) are superfluous.

In the case of semiprime rings and semiprime semigroups, the following theorem is essentially

Thm. 7.2 in [3].
THEOREM 3.4. Let S be a semiring or semigroup with absorbing element O or a ring such

that S is semiprime. Then each O-minimal quasi-ideal Q of S is also a canonical quasi-ideal of S.

PROOF. At first we state, that (SQ) =/: {O} holds since otherwise Q - {O} would be a left

ideal of S and satisfy Q2 {O}, contradicting that S is semiprime.

The quasi-ideal {O} C_ (SQ) 0 (QS) c_ Q satisfies either

(SQ> (QS> {o} o (SQ> (QS> Q

since Q is O-minimal. To show (SQ)gI(QS) Q we go by contradiction and assume (SQ)f3(QS)

{O}. Then (QSQ) c. (SQ)f)(QS) {o} implies ((SQ)2) (SQSQ) {O}, which together with

(SQ) {O} contradicts that S is semiprime. So it remains to show that the one-sided ideals

(SQ) and (QS) of S are O-minimal. Assume{O} C L C_ (SQ) for a left ideal L of S. Then the

quasi-ideal (SL) (QS) satisfies either

(L> (QS) {0} o (SL> (Q> Q,

since (0) C_ (,.,eL) (QS) c_ (SQ) f’l (QS) c._ Q holds and Q is assumed to be O-minimal. Now

(QL) c_ (SL)N (QS) {O} would imply (L) C_ ((SQ)L) (SQL) {O}, but S is assumed

to be semiprime. So we obtain (SL) f (QS) Q which impfies Q c__ (SL) c_ L and in turn

(SQ) c_ (SL) C_ L, hence L (SQ), so (sQ) is O-minimal. Dually, the right ideal <QS) of 5’ is

also O-minimal.

Let 5’ be a semiring or semigroup with absorbing element O or a ring. Then 5’ is called quasi-

reflexive iff all two-sided ideals A,B of 5’ satisfy the implication (AB> C_ {O} => (BA) C_ {O} or
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equivalently AB C_ {O} BA C_ {O}. Obviously each semiprime semiring, semigroup or ring is

also quasi-reflexive, but not conversely.

For rings and semigroups the following lemma is a special ease of Prop. 2.1 and Cow. 2.3 in [7].

LEMMA 3.5. Let S be a semiring or a semigroup with absorbing element O or a ring. Then

the following conditions are equivalent:

a) All two-sided ideals A, B of S satisfy AB C_ {O} = BA C_ {O}.

b) All left ideals A, B of S satisfy AB C_ {0} BA C_ {0}.
c) All right ideals A, B of S satisfy AB C_ {O} : BA C_ {O}.

PROOF. The implications (b) = (a) and (e) = (a) are obvious. For the proof of (a) (b),

assume AB C_ {O} for any left ideals A, B of S. Then (A U AS) and (B U BS) are two-sided ideals

of S satisfying

(A U AS)(B U BS) G (AB U ABS U ASB U ASBS) G {O}

and hence by (a) also (BU BS)(AU AS) C {O}, which clearly implies BA C_ {O}. The implication

(a) = (c) is the dual of (a) = (b).
LEMMA 3.6. Let L be an (O-)minimal left ideal of a semiring, a ring or a semigroup S and

O # e e E L. Then ((eL)’,.) is a subgroup of (S,.).
PROOF. Clearly, (eL, .) is a subsemigroup of (S,-) with e as left identity. In fact even ((eL)’,-)

is a subsemigroup of (S, .), since the assumption ab O for any a, b
_

(eL)’ (together with

(a)t (aUSa) L by the (O-)minimality of L) would imply Lb (aUSa)b {O} in contradiction

to 0 b eb eL. To show that ((eL)’,.) is a group consider any element el (eL)’. Then

0 el eel Lel and (S(Lel)) ((SL)el) C_ (LeO Lel shows that {O} Lel is a left ideal of

S which is clearly contained in L. This yields Lel L since L is (O-)minimal. Now we conclude

eLel eL and so there exists an element z ek eL such that zel ekel ee e which shows

that ((eL)’, .) is a group since z O is of course impossible.

For quasi-reflexive rings and semigroups the following proposition and theorem correspond to

Props. 4.1 and 4.3 in [7]. They contain Thm. 7.4 of [3] for semiprime rings and semigroups as

special cases.

THEOREM 3.7. Let S be a semiring or semigroup with absorbing element O or a ring such

that S is quasi-reflexive. Then for each element e e2 =# O of 5’ the following statements are

equivent"

a) Se is an O-minimal left ideal of S.

a’) eS is an O-minimal right ideal of S.

b) eSe is an O-minimal quasi-ideal of S.

c) ((eSe)’,-) is a subgroup of (S, .).
PROOF. The equivalence (b) @ (c) is known for arbitrary semirings ([8], Satz 4.5), arbitrary

rings ([3], Prop. 6.11) and arbitrary semigroups ([3], Prop. 5.6). From Lemma 3.6 and its dual

we obtain (a) (c) and (a’) = (c). For (b) (a) let {O} - L C_ Se be a left ideal of 5’. Then

Le L holds. Furthermore, eL is a quasi-ideal of S by Lemma 1.3 and we show eL {O}
by contradiction. Indeed, eL {O} would imply SeL {O} and hence LSe {O} since S is

assumed to be quasi-reflexive. The latter would imply Le {O}, contradicting Le L =/= {O}.
So we have {O} eL eLe C_ eSe, hence eL eSe since eSe is assumed to be (O-)minimal. Of
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course O # e is cancellablc in the group ((cS)’,-), so we conclude L Se, hence th(" left ideal Se

is (O-)minimal. Similarly one shows (b) =, (a’).
THEOREM 3.8. Let S be a semiring or semigroup with absorbing element O or a rig such

that S is quasi-reflexive. Then each O-minimal quasi-ideal Q of S satisfies either Q2 O} ,r it

is a canonical quasi-ideal of S.

PROOF. Let Q be an O-minimal quasi-ideal of S satisfying Q2 # {O}. Then by Theorem

3.2e) there exists an element O # e e S satisfyingQ SefqeS cSe. Since Sis qmsi-

reflexive and Q eSe is assumed to be O-minimal, by Theorem 3.7 the one-sided ideals Sc and

eS of S are also O-minimal, hence Q is canonical.

Finally, we give some statements on canonical quasi-ideals for arbitrary semirings, semigroups

and rings. In the last both cases the following theorem and lemma correspond to Thin. 6.7 a),

Thin. 6.7 b) and Prop. 6.9 in [3].
THEOREM 3.9. Let S be a semiring, a ring or a semigroup and let L and R be (O-)minimal

left and right ideals of S. Then (RL) is either {O} or a canonical quasi-ideal of S satisfying

PaOOF. We assume (RL) (0), which clearly holds if 5’ has no absorbing element, and

the same applies to statements like "(SILL) {O)" or "O x" appearing in the following. By

Lemma 1.2 c) and Theorem 3.1, we have (RL) C_ L 11. Q where Q is a canonical quasi-ideal,

and hence an (O-)minimal quasi-ideal of S. So we have to show that (RL) is a quasi-ideal of S,

that is (SRL)VI (RLS) C_ (RL). This is trivial if (SRL) {O} or (RLS) {O}, so let us ass,,,ne

(SRL) # {O} and (RLS) :p {O}. By the (O-)minimality of L and R we get (SRL) L and

(RLS) R. Clearly, (SRL) :/: {O} implies the existence of 0 : x RL C_ L R with Sx :/: {O}.
Since L is (O-)minimal, we get Sx (Sx) L and SxS LS. Now R (RLS) {O} implies

{O} - LS SxS, thus {O} xS (xS) C_ R. Since R is (O-)minimal, this yields xS R.

Hence we can conclude 0 x c= RL xSSx C_ xSx, thus x is regular in S. So we can apply Thm.

2.2 to (x), L and (x) R and we obtain (RL) ((x)(x),) (x), n (x) Sx xS L R,

which proves that (RL) is a quasi-ideal of S also in this case.

LEMMA 3.10. Let S be a semiring, a ring or a semigroup and .let L be an (O-)minimal left

ideal of S and a e S. Then La is an (O-)minimal left ideal of S or La {O} holds.

PROOF. For each left ideal L of S and a S clearly La (La) is a left ideal of S. Now

assume {O} C_ A C_. La for a left ideal A of S and define B by {b L ba e A}. Then A Ba

holds and B is obviously a left ideal of S. From {O} C_ B C_ L we o],,ain either B {O} or B L,

i.e. A {O} or A La. Hence La is an (O-)minimal left ideal of S.

Now we prove two theorems which contain Thins. 2.2 and 2.8 in [4] for rings and Thins. 2.3

and 2.9 in [5] for semigroups.

THEOREM 3.11. Let S be a semiHng, a ring or a semigroup and Q a canoni-cal quasi-ideal

of S. Hence there is a (unique) (O-)minimal left ideal L and a (unique) (O-)minimal right ideal R
of S satisfying Q L f). Then for each a e S either Qa (Qa) is a canonical quasi-ideal of S

satisfying Qa La R or Qa {O} holds.

PROOF. We assume Qa :fi {O}. Then obviously Qa c. La f Ra C La R K holds. Since

La is an (O-)minimal left ideal of S by Lemma 3.10, K is a canonical quasi-ideal of S. We are now
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going to show La (’1 R K C_ Qa. Consider some k :p O of K. Then k ba for some b E L yi(’l(ls

R (k)r C_ (b)r. Since Q is contain’d in the (O-)minimal left ideal L, each q O of Q satisfies

Sq L or Sq {O}. In the last case, L (q)t C_ Q implies L Q, which makes If Laf3R C_ Qa

trivial. Otherwise, there is at least one q O of Q such that Sq L holds, which yields .q b

for the b considered above and sone.s E S. This md q G Q c_ Rimply R C_ (b) (sq) C_.R.

By the dual of Lemma 3.10, sR is an (O-)minimal right ideal of S which yields R sR and hence

bG R. So we have obtained b Lf3R Q and thus k ba c: Qa, i.e. again K Laf) RC_ Qa.

From Qa c_ K as stated above we obtain Qa La f)R.

THEOREM 3.12. Let S be a semiring, a ring or a semigroup and let Q,Q be canonical

quasi-ideals of S. Then (Q,Q) is a canonical quasi-ideal of S or (Q, Q2) {O} holds.

PROOF. Since Q,Q are canonical quasi-ideals of S, there are (O-)minimal left ideals L,L

and (O-)minimal right ideals R,R of S such that Q L f3R and Q LVIR. Let us assmne

(Q,Q) {O}. Then

Because of (Q1Q2) # {O} there is a O # q E Q with Q,q # {O}. Then Theorem 3.11 implies

Qq LqzVI R. From {O} Qq c_ Lq: c_ LL C_ Lz we get Lq: L sinceL2 is(O-

)minimal, so we have Qqz LR. Now LR Qlq: c_ QQ: c (QQz) c. LVR implies

(QQ) L C R, hence (Q Qz) is a canonical quasi-ideal of S.

The last corollary is an immediate conscquence of (1.6) and Theorem 3.12.

COROLLARY 3.13. Let S be a semiring, a ring or a semigroup which contains at least one

canonical quasi-ideal and let ]) denote the set of all canonical quasi-ideals of S. Then V or V U O}
is a semigroup with respect to the "product" (QQ), which has {O} as absorbing element in the

latter case.
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