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ABSTRACT. The main results of this paper concern radical classes of l-groups. In the sec-

tions 2-3 the relationship between several radical classes of /-groups are discussed and the

characteristic properties for several radical mappings are given. In the sections 5-6 we give

nice concrete descriptions of some important radical classes of /-groups using the structure

theorems of a complete/-group and an Archimedean /-group.
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1. INTRODUCTION

An /-group G is a group that is also a lattice such that c-4c-a---dc-4r-bq-d whenever a
b 1-1"]. The theory of/-groups is as natural as that of rings. But the fact of G is equipped

with two different kind of operations makes the things more eomplecated. We have more

subobjects in the category of/-groups. An/-subgroup of an/-group is both a subgroup and a

sublattice. An/-subgroup H is convex if a, b H and a9b imply that 9( H. A normal

convex /-subgroup is called an/-ideal. A function p: G-H between/-groups (7 and H is an

/-homomorphism if it is a group and a lattice homomorphism. Let (7. a6 A be a family of

and H (7 be their direct product where ( 9.----) Y ( fo----) (/-groups g.
aEA I\"

V f____) An/-group G is said to be a subdirect product of Go, in symbols G___.’ rl Go, if Gh aEA

is an/-subgroup of H Go such that for each a Cz A and each g’ Go there exists g G with the
aEA

property go g’. We denote the /-subgroup of H (7 consisting of the elements with only
aEA

finitely many non-zero components by G,. It is called the direct sum of Go ]a A }. An
EA

/-group G is said to be a completely subdirect product of (7o, if G is an /-subgroup of H (7
aEA

and Go__(7. An/-group G is said to be an ideal subdirect product of Go, in symbols G___
EA

I-I (7o, if G___’ FI (7o and G is an /-ideal of FI Go.

Let G be an/-group and X____G. Xa {fGlfor all x X, IJl A I1--0> is called the

polar of X in G and X-L-l- (X-t- )-t- is called the double polar. An/-subgroup H of G is closed

in G if, for all subsets {Xo a6 A} of H such that a= V xo exists in G we have a H. The

order closure a of H in G is the smallest closed/-subgroup of G containing H. Let Gx (Z
A) be convex/-subgroups of G. The join V Gx is the smallest convex/-subgruop of G con-

taining G (: A).
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A variety of any type of algebras is an equationally defined class. It is an important

area in the study of algebras. In 1935 G. Birkhoff proved that a class of algebras is a variety

exactly if it is closed under the formation of subalgebras, products and homomorphic images

[-2]. In 1937 B. H. Neumann initiated their study for varieties of groups [3, 4-1. In the

early 70’s J. Martinez began the study of varieties of/-groups [5, 6-]. He also studied tor-

sion classes of/-groups [-7, 8, 9-]. J. Jakubik studied radical classes of/-groups [- 10, 11,

12, 13, 14]. In this paper we give some results in the study for radical classes of/-groups.

We use the standard terminologies and notations of [- 1, 15, 16-].
We can make new/-groups from some original/-groups. These structures include:
1. taking/-subgroups,

1’. taking convex /-subgroups,

2. forming joins of convex/-subgroups,

3. forming completely subdirect products,

3’. forming direct products,

3". forming direct sums,

4. taking/-homomorphic images,

4’. taking complete/-homomorphic images,

4". taking/-isomorphic images,

5. forming extensions, that is, ( is an extension of A by using B if A is an/-ideal of

G and B=C./A,
6. taking order closures, that is, G is an order closure of A if A is a convex/-subgroup

of an/-group H and (7--A..

7. taking double polars, that is, t is a double polar of A if A is a convex/-subgroup of

an/-group H and (7=A
A family " of/-groups is called a class, if it is closed under some structures. If a class

is closed under the structures i, i, we call i i-class where i,

i {1, 1’, 2, 3, 3’ 4, 4’, 4", 5, 6, 7} and lk7. All ourclassesalwaysassumed

to contain along with a given/-group all its/-isomorphic images, so we omit the index 4".

Thus, a radical class [-101 is a l’2-class, a quasi-torsion class 17-] is a l’24’-class, a tor-

sion class [-7-1 is a 1’ 24-class, a s-closed radical class [- 18] is a 12-cl.ss, a closed-kernel rad-

ical class [18] is a 1’26-class, a polar kernel radical class [-18] is a 1’27-class, a variety

19] is a 13’ 4-class. 1’25-class is called a complete (or idempotent) radical class. We call

a 1’ 23’-class (1’ 23-class) a product radical class (a subproduct radical class). In this paper

3’ 3" 4 4’ 5we call all 1’2i i-classes radical classes where is, i {3,
6, 7}.
2. THE RELATIONSHIP BETWEEN RADICAL CLASSES

Let .. be a radical class and G be an/-group. Then there exists a largest convex/-sub-

group of G belonging to .. We denote it by . (() and call .’ (G) the ..-radical of (7.

It is invariant under all the/-automorphisms of G. Let Tl,. , be the set of all i i,- class-

LEMMA 2.1. T,_ T,23..

Proof. It suffices to prove that each radical class is closed under forming direct sums.

Suppose that is a radical class and (7 [a A ___/. Consider (-- YI (7o. Let o-- f
YI Go a’ ::a=f 0 for each a A. Then (7oc- V (o) o. Since is closed under
aA EA aEA
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forming joins of convex/-subgruops, Go /.

A radical class . is said to be a closed-kernel radical class if for any /-group G

(G) is closed [-183.
LEMMA 2.2. A radical class .. is closed-kernel if and only if .. is colsed under tak-

ing order closures.

Proof. Suppose that .. is a closed-kernel radical class, that is .. (G) --.’ (G)afor

any /-group G. Let G. and Go is an order closure of G in an/-group H, G.._.G,,. Then

G.._, (,,,)_tt. So , (Gtt) "--, (Gtt)=Gu and GH. Conversely, suppose that

a radical class ..is closed under taking order closures. Then for any/-group G, .’ (G)

implies . (G)G . Since (G) is the largest convex l-subgraoup of G belonging to, (O) = ()o.

LEMMA 2. 3. Every closed-kernal radical class is also a subproduct radical class, that

is T,6 =T,a.
Proof. Suppose that . is a closed-kernel radical class and G is a completely subdirect

product of {G ]A A} where {GI A} ____., that is

G_____G__’ HG.
XEa XEA

Then (G) G-= (G--) =and so ZD (G) = for each A. Let a-- (

a, ) G. Then

where -- (0, 0, a, 0, 0) ( (A(A)o Since. is closcd-kermel, a

(. (G). Hence G---- (G) and G..
A radical class . is called a polar kernel radical class if .._--.._t..t., that is (G). (G) -L-t- for any/-group G.

LEMMA 2.4. A radical class is a polar kernel radical class if and only if .. is

closed under taking double polars.
J__l_

Proof. Suppose that . is a polar kcrnal radical class. Let G ( and G# is a

c +/-+/-
double polar of G in an/-group H. Then G. (G+/-) __Ga and G
G
H

So (G
H

) =G
H

and G, 6. Conversely, suppo, that a radical class .. is

closed under taking double polars. Then for any/-group G, . (G) implies . (G)o"L’L. But . (G) is the largest convex/-subgroup of G belonging to ., so .. (G)

(G) +/-+/-

If and - are two 1’2-classes, define the prodict .-.- {GIG/ (G) -}...... is then a 1’2-class. Now similarly to [-7-] we give a more description of complete 1’

2-classes. Let - be a 1’ 2-class and o be an ordinal number. We define an assending se-

quence -, -z, -.......as follows:
if oi  ot ,imit

’- G G I.J ’- (G) if a is a limit ordinal.

It is easy to show that - is a 1’ 2-class for each ordinal a. Define

Then we have

PROPOSITION 2.5. Let be a 1’ 2-class. Then ." is a complete 1’ 2-class. It is

the srnallest complete 1 2-class containing .. So, .- is complete if and only if ..=".



132 D.R. TON

The proof of this proposition is similar to the proof of Theorem 1.6 of [7 ]. " is

called the completion of ... Similarly to Theorem 1.7 of [7] we have

LEMMA 2.6. Let be a 1’ 2-class and (7 be an/-group. Then .." ((7) __. ((7) +/-+/-.

That is, .." ..__..+/-+/- and T;,2r____T,2s.

From Proposition 4.4 of [18] we can also see that T;,2r___T,2s.

Since polars are closed convex /-subgroups, Ti,nr=Tt,7. From the above lemmas we

get

THEOREM 2. 7. For radical classes of/-groups we have the following relations:

nl
Ttv T, T,, T,, T, T,u, T, T,

Ul Ul 1 Ul Ul Ul

COROLLARY 2.8. Any lar kernel radial ela is a pruct radial cla and a su
pruct radial cl.

EXALE 2. 9. if0, the cl of orthofinite l-ou, that is/-gruo in which no

positive element exceeds an infinite pairwi disjoint t. We can show that 0 is a 1’ 25-

cl. SuppG0. if0, that is G/o(G) o. t {x. la A} a irwise disjoint

t of itive elemen of G with an upr und a. Then A=A Az, A A so that

x:, 0(G) for a A and x,,o(G) for a2 A. 0(G) if0 implies A] is finite.

Then we have 0 (G) +z: A ff0 (G) +x =0 (G) +x, Ax=o (G)for

a, a A, aa. So {if0 (G) +z. la A} is a pairwi disjoint t of itive elemen

of G/o (G) with an upr und 0 (G) +a. Hence IAI is al finite. Therefore 0
is a complete 1’ 2-cl. But 0 is not a 1’ 23-c1.

EXALE 2.10. , the el of all compolete/-oups, is a 1 23-c1, but not a 1

23-c1.

ELE 2. 11. t the variety of normal-valued/;ou. Then T,se,

but Tvzr by Proition 4. 6 of 18.
3. RADICAL PPINGS

t a l2-cla and G an /-group. t (G) the -radil of G. The

mappingG is ll the radial mapping on/-ou which h the prorty: if A is a

convex/-suboup of G, then (A) =A (G). Converly, y mapping iating

to each /-oup G /-ideal (G) of G and tistying the ave prorty always define a u-

nique radial cl such that (G) = (G) for each/-oup G 10J. a radial cla

is determin by im radial mapping. The ave prorty is ll the ehacteristie prorty

of a radial mapping. In 7 J. Mtinez gave the characteristic prorties for torsion radical

mapping. In 203 we gave the characteristic prorties for pruet radical mappings as fol-

lows.

THEOREM 3.1 (Theorem 2. 1 of 20J). A pruct radial l is uniquely deter-

ned by a pruet radial mappingG (G) which has the characteristic prorti:

(I) ifAisaconvex/-subyoupofGthen (A) =A (G); ([) if {GxlA} is

afalyof/-ou, then ( Gx) H (Gx).
xE a) xE a
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In this section we will prove the characteristic propertices for other radical mappings.

THEOREM 3.2 A subproduct radical class 2 is uniquely determined by a subproduct

radical mapping G--2 (G) which has the characteristic properties: ( ) if A is a convex l-

subgroup of G then 2 (A) --A2 (G) ( II ) if G is a completely subdirect product of l-

rI 2 (a).groups {Gxl,A} then , (G) =GNa

Proof. We only prove that the mappong G--*2 (G) satisfies the property ( II ). The

other parts of proof are similar to the proof of Theorem 2.1 of [-20]. Let O be a completely

Y! G g’ 0 for ’ X} for each
sutxlirect product of/-groups {G, [).C A}. Put G,= {gC

,e a

C A. Next, for each A and x, C G, we denote by ’, the element of O whose coordinate

is x, and other coordinates are O. Then the mapping 9o x,-, is an isomorphism of G, onto

,. Hence 9o (2 (G,)) --2 (,).

a) For each Z A, 2 (S,) belongs to 2. Put H--Of] H 2 (G,). Since H is a com-

pletely subdirect product of the system {. (G,) [Z A}, we obtain that H .. Thus H

(a).

b) For proving that .. (G) __H it suffices to verify that (G)+__.H+. Let

(G) +. For each C A let x be the coordinate of x in G,. By way of contradiction, suppose

that xH. Hence there is A with x,--- ((7,). In view of the isomorphism

(). But .- () =.- ((7) f]O, hence ,"-2 ((7). We have or.x and this implies

that ,2 ((7), which is a contradiction.

The proof of the following theorem is left to the reader.

THEOREM 3.3 A complete radical class 2,2s is uniquely determined by a complete

radical mapping (7-*2v2s ((7) which has the characteristic properties: ( ) if A is a convex

/-subgroup of (7 then 21,2s (A) =A[..,zs ((7) ( II ) for any/-group (7 ,zs ((7/,zs

(G)) --0.

Form Theorem 3.1, Theorem 3.2 and Theorem 3.3 we get the following theorems.

THEOREM 3.4. A complete product radical class . ,2a, is uniquely determined by a

complete product radical mapping G-2,2a, (G) which has the characteristic properties:

( ) if A is a convex/-subgroup of G then -l,a,s (A) --A ,l,2a, (G), (

A) is a family of/-groups then 2,a,s ( H G) H ,a,s (G), ( l[ ) for any/-group

a ,,, (a/,,s (a)) =0.

THEOREM 3.5. A complete subproduct radical class ,as is uniquely determined by

a complete subproduct radical mapping G-- 2,as (G) which has the characteristic proper-

ties: ( ) if A is a convex/-subgroup of G then ,as (A) --Af] ,as (G) ( II ) if G

is a completely subdirect product of {G[Z( A} then ,-v.as (G) --Gf] H vas
( 11 ) for any/-group G :gv-as (G/,-,as (G)) ----0.

4. THE STRUCTURE OF A COMPLETE/-GROUP AND ARCHIMEDEAN /-GROUP

In order to give concrete discriptions of some important radical classes we need to know

the structure of a complete /-group and an Archimedean /-group. First we introduce some

concepts. Let G be an/-group. We denote by vG the least cardinal a such that [Ala for

each bounded disjoint subset A of G, where A[ denotes the cardinal of A. G is said to be v-

homogeneous of vH--vG for any convex/-subgroup H:g: 0 of G. G is said to be v-homo-

geneous/-group of ct type if vG--(x. An/-group G is said to be continuous, if for any 0x
G we have x--x-[--x:and x Axe--0, where z:g:0, x:g:0. By Theorem 3. 7 of [21] it
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is easy to verity the following lemma, the proof is left to the reader.

LEMMA 4. 1. Any complete /-group is /-isomorphic to an ideal subdirect product of

complete v-homogeneous/-groups.

By using 4.3 of 21-] it is easy to verity that if an /-group G is v-homogeneous and

non-totally ordered, then v G:0. It is well known that any non-zero complete totally or-

dered group is/-isomorphic to a real group R or an integer group Z. So from Lemma 4. 1 we

obtain the structure of a complete /-group.

THEOREM 4. 2. Any complete/-group G is/-isomorphic to an ideal subdircct product

of real groups, integer groups and complete v-homogeneous/-groups of i type (i0).
LEMMA 4. 3. (Proposition 2. 3 (1) of /22-]) Let G be a v-homogeneous/-group of

i type and G:f: {0 }. Then G has no basic element.

LEMMA 4.4. (Lemma 2.4 of [-22-]) A complete/-group G is continuous if and only

if G has no basic element.

COROLLARY 4.5. A complete v-homogeneous/-group of i type is continuous.

Now we turn to an Archimcdean /-group.

A subset D in a lattice L is called a d-set if there exists x C L such that d A d2- x for

any pair of distinct elements of D and ttz for each d6 D. We denote by w I-a, b-] the least

cardinal a such that Dla for each d-set D of I-a, b-l.
LEMMA 4. 6. An/-group G is Archimedean if and only if G is/-isomorphic to a subdi-

rect product of subgroups of reals and Archimedean v-honogeneous/-groups of l type.

Proof. The sufficiency is clear. We need only to show the necessity.

LetG be an Archimedean/-group. Then G has the Dedekind completion G^ From The-

orem 4.2, without loss of generality, we have

T,

___
GAC II T,, (4. 1)

where T--R or Z or a continuous complete v-homogeneous/-group of

/k. Let p be the projection map from G^ onto T. Put pT--T6’,

/k {6 6 /k[T a},/k {6 6 /kiT6 Z} aad/k /k\(/k LJ/k2).
Thus, for 56/k, [3/k_ T’ is a subgroup of reals. For 56/k we can show that T’ is also

v-homogeneous. In fact, for any a, b6 T’ (a<b), we denote by [-a, b]L’ the interval in

TJ and by I-a, b-]T, the interval in T. We assume that w a, b-]L--’ ,.
b]L implies w [a, b]L’w [a, b]L--,. On the other hand, let {c,[j J, IJI-
be a disjoint subest in [-0, b--a-]L. Since G is dense in G ^ T’ is also dense in T. For each

c (j J), there exists 0<(c/ T’ such that c/c. Thus {c/[j J is also a disjoint sub-

set in [-0, b--a]L’. So w [a, b-],’=w [0, b--a]L’,. Therefore w [a, b]’,’=., for

any a,b6 T,’, and so T’ is w-homogeneous. From 3.6 in [213 T,’ is v-homogenous. Since

T is complete, T’ is Archimedean. From (4. 1) we have

G__’ H T’,

where each T’ is a subgroup of reals or an Archimedean v-homogeneous/-group of ’,i type

for 66
Suppose that G is a subdirect product of subgroups of reals and v-homogeneous/-groups

of , type, G____’ H T. Let /k= {6/k [T is a subgroup of reals}. If T_.G, G is

said to be a semicomplete subdirect product of subgroups of reals and v-homogeneous l-

groups of , type, in symbols ., T_G___’ H T,.
EA,C&
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THEOREM 4.7. An /-group G is Archimedean if and only if G is /-isomorphic to a

semicomplete subdircct product of subgroups of reals and Archimcdean v-homogeneous l-

groups of , type.

Proof. We nccd only to show the necessity. By Lcmma 4. 6, without loss of generali-

ty, we have

G___’ H T’,

where each T6’ is a subgroup of reals or an Archimedcan v-homogeneous/-group of , type.

Put /k {46/k ITs’ is a subgroup of reals}. For each 46/x,, and any 0<t6 TJ there

cxsits O<z6G such that z=t. Let = (0, .’-, 0, t, 0, ..., 0) be the clement with

only one non-.zero component t. Since 6G (see the formula (4. 1 )) and G is dense in

G" thcrccxists’= (0, ..., 0, t’, 0, .’., 0) 6Gsuchthatt’t. BccauseT’ isa

subgroup of reals, there exists some n6 N such that t<t’. Then x A n ’ =6 G. Hence

T’-- {6lt6T’ ___.G for each 46
Therefore

6A,A

5. THE RADICAL CLASSES GENERATED BY Z

For a family X of l-groups wc denote by ,,2,,... (X) the intcresction of all I’ 2i3
S’ 4 4’ 5 6 7} It is thc smallest I’it-classes containing X where ia, it 6 3,

2ia ik-class containing X and said to be the 1’ 2i it-class generated by X. The 1’ 2ia

it-class generated by a single /-group G is denoted by -r%...kG. It is well know that

.a,4z--f’, the variety of all abelian/-groups. In this section we will determine some radi-

cal classes generated by the integer group Z.

We recall that an element g0 in an/-group G is singular if g--t-+-g2 with , g0
only when g A g2 0. A negative element g is called a negative singular element if -g is a

singular element, r_ (G) will be denoted the set of all convex/-subgroups of an/-group G.

LEMMA 5. 1. An/-group G is a direct sum of Z if and only if G is a complete/-group
which has no continuous convex/-subgroup and each element of G is a sum of singular ele-

ments and negative singular elements.

Proof. Let G= Z., Z=Z for all a C:: A. By Theorem 4. 2 G is complete. Since Z
a6A

is not continuous and every integer is a sum of singular elements 1 and negative singular ele-

ments 1, G has no continuous convex/-subgroup and each element of G is a sum of singu-

lar element and negative singular elements. Conversely, if G is a complete/-group which has

no continuous convex /-subgroup and each element of G is a sum of singular elements and

negative singular elements. Since a complete v-homogeneous/-group of , type is continu-

ous and the real group R has no singular element, it follows from Theorem 4.2 that GC2

H Zo with Z--Z for all a A. But each element of G is a sum of singular elements and neg-

ative singular elements, so G= 2;..

THEOREM 5.2. , Z,

Proof. First we prove that the set of all direct sums of Z is a 1 2-class. It is clear

that .’ is closed under taking convex/-subgroups, because any convex/-subgroup of a direct

sum of Z is still a direct sum of Z. Suppose that G (G) and Gx= Z% (Z--Z) for

k A. It is well known that c@, of all complete/-groups is a radical class [-13"], that is c@, is
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closed under taking joins of convex /-subgroups. So V (o) G is complete. V (a)G has no

continuous convex /-subgroup. In fact, if H is a convex /-subgroup of V (a)G. Since

(G) is a Brouweian lattice,

H H ( V (a)G) V ()(H G).

h HG is a convex -subgroup of G,, so HG= Z.,,(Z.,,=Z). Hence for each

A A, if 0z.,, Z.,,H (ax’ A), then z., nnot expre to z.,,=xxsuch that

x Axe:0 and x0, x0. So H is not continuous. t x (a)Gx. Then x

x. with x, Gx. Since each x, is a sum of singular elements and negative singular

elements, x is a sum of singular elements and negative singular elements. Therefore

is also a direct sum of Z by mma 5. 1.

Now supse that is a l’2-cla containing Z. t Z. (Z.:Z) a direct sum of

Z. Since is cloud under king joins of convex/-suboups and

by Corollary 1 of Theorem 1. 5 in 15, Z . This shows that is the smallest 1’

2-c1 containing Z.

LEMMA 5.3. An l-oup G is an ideal suircct pruct of Z if and only if G is a com-

plete l-oup which h no continuous convex l-suboup d ch convex l-suboup of

h a singular element.

Prof. The nccity is clear. Supp that G is a complete/-oup which h no con-

tinuous convex/-suboup and ch convex -suboup of G h a singul clement. By The-

orem 4.2 we have

where ch G is Z or R or a complete v-homogeneous/-oup of , ty. Sin a complete
v-homogeneous l-group of ty is continuous and R h no singular clement, so

where Z:Z for each A.

THEOREM 5.4. s,s,z G G" Z, Z Z for all A .
a

Prof. First we prove that the t of all idol suirect pructs of Z is a 1’ 23’-

cir. is cl under taking convex l-subou,u any convex l-suboup of

idol suircct pruct of Z is still an idol suirect pruct of Z. Supp that is an l-

oup and (),

fo . flay o h pf of Theoe 5.2 e ha wG copl and h no

continuous convex -subroup. H a convex -suboup of cG, hn

H V )(H ).

For ch A6 A, HG; is a convex/-subgroup of G, so HG" Z% (=Z). Hence
EA

H h a singular element. It follows froma 5.3 that V ()G .
Now sup that is a 1 23’-cla containing Z. Sin a convex/-suboup of direct

pruct of Z is an ideal subirect pruct of Z, so and is the smallest 1’ 23’-

cl confining Z.
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LEMMA 5.5. An/-group G is a completely subdirect product of Z if and only if G is an

Archimedean /-group which has no continuous convex /-subgroup and each convex /-sub-

group of G has a singular element.

Proof. Necessity. .Let Z
___

G---’ FIZ (Z Z). By Theoreni 4.7 G is

Archimedean. It is clear that (7 has no continuous convex /-subgroup. Each convex /-sub-

group H of (7 contains at least a Z, so H has a singular element.

Sufficiency. Suppose that (7 is an Archimedean/-group which has no continuous convex

/-subgroup and each convex /-subgroup of (7 has a singular element. By Theorem 4.7 we

ha,

_.G
___

G

__
l-I G

where each G is Z or R. But each G is a convex/-subgroup of G and R has no singular ele-

ment, so Zx___G_____ H Zx (Z--Z).
xE^

THEOREM 5.6. vz3z {(7] Z.___(TC::’ YIZ., Z=Z for all aA}.

Proof. First we prove that the set of all complete subdirect products of Z is a 1’23-
class.. is closed under taking convex /-subgroups, because any convex /-subgroup of a

completely subdirect prodeut of Z is still a completely subdirect product of Z. Suppose that (7

is an/-group and GxE r_ ((7), (Tx. (X A). Since t the set of all Archimedean l-

groups, is a quasi-torsion class [-14"] and is closed under taking joins of convex/-subgroups.

So V (o)(Tx is Archimedean. Similarly to the proof of Theorem 5.2 and Theorem 5. 4 we see

that V (o)(7 has no continuous convex /-subgroup and each convex /-subgroup of (7 has a

singular element. It follows from Lemma 5. 5 that V (o)(Tx ... It is obvious that . is the

smallest 1’ 23-class containing Z.

The following proposition is a corollary of Theorem 2.7.
PROPOSITION 5. 7. Let (7 be an/-group, then we have the following relationship be-

tween the radical classes generated by G:

NI NI NI NI NI NI

NI NI NI NI

t a radial cla. 18 M. Dnl defin the order clur, " of with

’ (G) = (G)ofor any/-oup G. It follows froma 2.2 d Proition 5.7 that

From theorem 5.2, Theorem 5.4, Theorem 5.6 and the formula (5.1) we get

THEOREM 5.8. ( ) ,z {GIG is an order clure of a convex /-suboup

Z (Z Z) of an/-oup H }.

( ),z {GG is an order clure of a convex/-suboup K of an/-oup H where

g" H Z. (Z.=Z) }.

( ),z G]G is an order clure of a convex/-suboup K of /-oup H where

ZZ.K, H z. (z.=z) }.
aEA aEA
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From Lemma 2.4, Theorem 5.2, Theorem 5.4, Theorem 5. 6 and Proposition 5.7
we have

THEOREM 5.9. ) . ,27z-- GiG is a double polar of a a convex/-subgroup ] Z.

(Z.--Z) of an/-group H }.
( II ,2Tz--..v,z-- GIG is a double polar of a convex/-subgroup K of an/-group

H where K__* l-I Z (Z.-----Z) }.
aEA

( II ) .v2z----..,z-- GIG is a double polar of a convex/-subgroup K of an/-group

H where ] Z.N___.’ IFI Z. (Z--Z) }.
E A *E A

LEMMA 5.10. Let _’ be a radical class, then ..,+/-.1.-- {Glfor each convex/-subgroup

c of a (c) =/=0}.
Proof. +/- (G) is the largest convex l-subgroup C of G such that (C) --0. So _I_

(G) :0 if and only if for each convex l-subgroup C of G (C) ==0. Since +/- (G)

(G) +/- G 1+/- if and only if 1 (G) --0, if and only if for each convex/-subgroup

CofG (c) 0.
Let 0. be a radical class. It is clear that ..11 is the smallest polar radical class con-

mining . From Lemma 2.4 and Lemma 5.10 we get
11THEOREM 5. 11..,2rz ----,= G leach convex/-subgroup of G contains a convex

/-subgroup Zo (Z--Z) }.
aEA

6. THE RADICAL CLASSES GENERATED BY R
In this section we will determine some radical classes generated by the real group R.
LEMMA t5.1. An/-group G is a direct sum of R if and only if G is a complete/-group

which has no continuous convex/-subgroup and for each principal convex/-subgroup C of G
vC is finite and CI0.

Proof. Let G= . Ro (Ro--R). By Theorem 4.2 G is complete. Since R is not continu-

ous and R is a totally ordered group, G has no continuous convex/-subgroup and

for each convex/-subgroup K of G. Since each element of G has only finitely many non-ze-
ro compbnents, v C is finite for each principal convex/-subgroup C of G.

Conversely, suppose that G satisfies the conditions of Lemma, 6.1. Since a complete v-

homogeneous/-group of l type is continuous and ]Z] 0, G__. YI R. (R.----R) by Theo--

rem 4. 2. The fact that v C is finite for each principal convex/-subgroup C of G implies that

each element of G has only finitely many non-zero components. Therefore G---- Ro (R.--

R).

THEOREM 6.2. ,,-a--- ’. Ro R.----R for an a6 A }.

Proof. We can prove that the set . of all direct sums of R is a 1’ 2-class. It is clear
that . is closed under taking convex/-subgroups. Suppose that G is an/-group and

(G), G R., (R., ---R) for X A. Similarly to the proof of Theorem 5. 2 we can show

that V o> is complete and has no continuous convex/=subgroup.

Now we prove that v C is finite for each principal convex/-subgroup C of V o>, Let

Oz V >G. Then

where zx, G, (lin). Let Go be the convex/-subgroup generated by x in V G. Sup-
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pose that {zola A} is a disjoint subset of Go. We assume zz for each a A (otherwise

let --z. A z). Put zl,= zo A zx+ i= 1, n. For each a A there at least exists

0. Because if allz,=0 (i=l, ..., n), then

O.<z,,=z,, A zzo A (z + +z):,, A :r+ +:, A :r O,

a contradiction. It is clear that

z’.. A X’o, z A x. A x+ O(a:#:a’),

and so {z’ola6 A} is a disjoint subset of G,, (z) for i= 1, ..., n. Since v G,,(z) is finite

for i= 1, "-, n, ]AI must be finite. Combining the above we see that V ((7=H
(H.=Z or R) by Theorem 4.2. Since any convex/-subgroup K of H is also a join of

direct sums of R and K l> 0, Ho cannot contain Z as a convex l-subgroup. Hence

V (aa= R. (R.--R) by Lemma 6. 1.
XEa

Similarly to the proof of Theorem 5.2 we can show that , is the smallest 1’ 2-class

containing R.

LEMMA 6.3. An l-groap G is an ideal sulxlirect product of R if and only of G is a

complete/-group which has no continuous convex/-subgroup and KI> for each convex

/-subgroup K of G.

The proof of this lemma is obvious by Theorem 4.2.

THEOREM 6.4. -I,Z3,R {G a 17 R., R R for all a A }.
aEA

The proof of this theorem is similar to those of Theorem 5.4 and Theorem 6.2.

LEMMA 6. 5. An/-group G is a completely subdirect product of R if and only if G is

an Archimedean/-group which has no continuous convex/-subgroup and gl for each

convex/-subgroup K of G.

The proof of this lemma is obvious by Theorem 4.7.

THEOREM 6.6. -,’3R--- {GI R.__G.__’ FIRo, R--R for all a-A}.
aEA aEA

The proof of this theorem is similar to those of Theorem 5. 6 and Theorem 6.2.
Similarly to Theorem 5.8 we have

THEOREM 6.7. ( ) .l,zt {GIG is an order closure of a convex/-subgroup R.
(R.=R) of an/-group H }.

( II ) -’2eR--- GIG is an closure of a convex/-subgroup K of an/-group H where K
____" FIR (R=R)}.

(11) -,2R= GIG is an order closure of a convex l-subgroup K of an l-group H
where R.___K___’ YI R (R=R) }.

aA aA

Similary to Theorem 5.9 we have

THEOREM 6.8. ( ) ,zrt GIG is a double polar of a convex/-subgroup R.
(R=R) of an/-group H }.

( 1I )..vzrt=,,.vnt= {GIG is a double polar of a convex/-subgroup K of an/-group

H where KC:: 17 R,, (R.=R) }.
aEA

( 1 ) .,2=..,23r GIG is a double polar of a convex/-subgroup K of an/-group

H where RCZKC::’ H R (R.=R) }.
aA aEA

Similarly to Theorem 5.1 1 we have
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THEOREM 6 9. .,,2rz =....1_.i. G leach convex/-subgrouo of G contains a convexI’ 2R

/-subgroup Ro (R. R) }.

7. AN EXAMPLE
We consider the totall ordered group Z Z. Z0-- (0. z) z Z ’Z is an l-idezd

z z. is +/- =z z Z Z/Z0 Z0. So Z

--,,sz, but ZZ’..rz. Hence --r2z::.-,sz..-,2sz=.-:z.
Similarly, RR.,2sz and RR’.,2. Hcncc -,,::.-,5,
Note. Since Z and R have no proper convex l-subgroup, ,zand,arc closed un-

der l-homomorphisms. Therefore ,4,z--..,4z ---.,z and
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