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Abstract. Time-invariant nonlinear systems with differentiable motions are considered. The algorithmic

necessary and sufficient conditions are established in various forms for one-shot construction ofa Lyapunov
function, for asymptotic stability of a compact invariant set and for the exact determination ofthe asymptotic

stability domain of the invariant set.

The classical conditions are expressed in terms of existence of a system Lyapunov functions. The

conditions of theorems presented herein are expressed via properties of the solution v to -p, or of the

solution w to -(1 w)p, for arbitrarily selected p C. P(S;f) or p C. Pt(S;f), where families P(S;f) and
Pt(S;f) are well defined. The equation -p, or its equivalent /, -(1 w)p, should be solved only for

one selection of the function p.
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1. INTRODUCTION
The fundamental classical problem of the Lyapunov stability theory [5] has been that of the exact

one-shot construction ofa system Lyapunov function. This is a consequence ofthe conditions for asymptotic
stability because they are expressed for nonlinear systems via existence 6f a Lyapunov function. Such

classical criteria for asymptotic stability of a set were proved by Zubov [7, p. 204], Bhatia and Sztige [1,
p. 207], and La Salle [4, p. 32].

The open problems are the following:
What are the necessary and sufficient conditions for asymptotic stability of a compact invariant set

J, which are not expressed via existence of a Lyapunov function?

What are the necessary and sufficient conditions for one-shot algorithmic construction of a

Lyapunov function?

What are the necessary and sufficient conditions for exact one-shot determination of the asymptotic

stability domain of the set J? The notion of the asymptotic stability domain is defined in the

Appendix by following [2], [3].
All three problems are solved in various forms in what follows for a large class of time-invariant

nonlinear systems.
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2. NOTATION

Capital Roman letters will denote sets and spaces. J will be an invariant set of a system, J CR’. Its

neighborhood will be denoted by A(J),N(J) or S(J), and its 6-neighborhood will be designated by B6(J),
Bt(J)- {x "p(x,J) <. 6}, where p(x,J)-inf{llx -yil "Y J} with Ilxll -(:x). Notice thatJ CA(J)
andJ C Bn(J). The closure, interior and boundary of a tJ are denoted by J’, j and &/. The empty set is

O.

Ds(J),D,(J) and D(J) will be used for the domain of stability ofJ, the domain of attraction ofJ and

the domain ofasymptotic stability ofJ, respectively. Their definitions are given in the Appendix by referring

to [21, 13].

A motion .of the system to be considered is denoted by x_..(t;x0) with x_..(0;x0)- Xo. If v :R" R is

differentiable then dv(x)/dt O(x) is the Eulefian derivative of v along system motions.

Other notation will be explained in the sequel.

SYSTEM DESCRIPTION
A system to be studied is described by --- f(x), (3.1a)

tR, xR’, f:R’--,R’. (3.1b)

It is accepted that the system possesses one of the next two smoothness properties.
Weak Smoothness Property:
(i) There is an open neighborhood S(J) of a compact invariant setJ of the system (3. lab) such that for

every x0 IS(J) -) ]:

(a) the system has the unique solution x_.(t;x0), and

(b) the motion x_(t;xo) is defined, continuous and differentiable in (t,x6)Iox[S(J)-)],
1o lo(xo) _C R+ and 1o .

(ii) For every x0 JR" -S(J)] every motion x(t;Xo) of the system (3. lab) is continuous in

Strong Smoothness Property:
(i) The system (3.1ab) possesses the Weak Smoothness Property.
(ii) If the boundary dS(J) orS(J) is non-empty then every motion of the system (3. lab) passing through

xo dS(J) obeys inf{p[x_(t;xo),S(J)]:t R/} > 0 for every xo #S(J).

4. LYAPUNOV FUNCTION GENERATION AND DE’rERMINATION
OF THEASYMPTOTIC STABILITY DOMAIN FORTHE SYSTEM
WITH STRONG SMOOTHNESS PROPERTY

A function v" R" R will be called positive definite with respect to J if and only if there is a

neighborhood A (J) ofJ such that

(i) v(x) is continuous in x EA (J),

(ii) v(x > O for every x [A (J J ],

(iii) v(x) 0 for every x .
A function v is positive definite on N(J) with respect to J if and only if the preceding conditions (i)-(iii)

hold forA (J) N(J).
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We shall write A, B.), D(.), N and S instead of A(J), B(.)(J), D+)(J), N(J) and S(J), respectively, as

soon as J is known and fixed. In the sequel the set J is assumed known and fixed.

In order to generate a v-function (Lyapunov function) for the system (3.lab) the following definition

is introduced.

Definition 1. (i) P(S;f) is the family of all functions p :R" R obeying 1)-3),

1) p is differentiable on S and positive definite on S with respect to J,

2) for any ct > O such that B CS there is [A > O, [A l?,(ct;p ;S ), satisfying inf[p(x x (S B,)] [%

3) there is Ix ]0, +oo[,Ix. Ix(o;/], such that there exists a solution v to the following system determined

along motions of the system (3.lab),
d

v(x) [grad v(x)f(x) -p(x) (4.1a)
dt

v(x)-O, Yx j (4.t,)

which is defined and continuous in x E B,.

(ii) Pt(S;.D is the family of all functions p P(S;D for which the solution function v to

(4.lab) is also differentiable on B,.
Notice that p P(S;f) does not imply by itself that the solution function v to (4.lab) is positive

definite with respect to J. In fact, p P(S;f) guarantees only existence of a continuous solution v to

(4.12ab) on any small neighborhood B, of J. Therefore, a selection ofp to obey p P(S;f) is rather a

pure problem ofsolving (4. lab) than a stability problem. Methods for solving (4. lab) will not be considered

herein.

The condition 2) of Definition means that p(x) does not converge to zero as x---, 0S or

Ilxll +o,xS. For example, p(x)-O if xJ and t,f)-Cllxll’-l)f2+llxll ) if xqJ, and

S-Bt-{x’p(x,J)<l} with J-{x’llxll <} obey the condition 2). But, p(x)-O if xJ and

p(x)-(xll- )(2-Ilxll ) ifx J, and S --BI do not fulfill the condition 2). Notice that p is positive

definite on BI with respect to J and differentiable onB in both cases.

Theorem 1. In order for a compact invariant set J of the system (3.lab) with the Strong Smoothness

Property to have the domainD o.fasymptotic stability andfor a set N, N C_ R’, to be the domainD N D,
it is both necessary and sufficient that

1) the setN is an open connected neighborhood o.fJ andN C_ S, and

2) (a) for arbitrarily selectedfunction p P(S;f), the equations (4. lab) have the unique solution v on

N with the followingproperties:

(i) v is positive definite on N with respect to J,
(ii) ifthe boundary ON ofN is non-empty then v(x +oo as x ON,x N, or,

(b) for arbitrarily selected p Pt(S ;j’) the equations (4.lab) have the unique solution v on N with

the .following properties:

(0 v is differentiable on Nandpositive definite on N with respect to J, and
(ii) ifthe boundary ON ofN is non-empty then v(x) +oo as x ON, x N.

Proof Necessity. Let the compact invariant setJ ofthe system (3. lab) with the Strong Smoothness Property
have the asymptotic stability domain D. Hence, it also hasDo (Definitions A-2 and A-3 of the Appendix),
which is a connected open neighborhood ofJ. Evidently, D, fqS , . LetD C._ S be first proved. If 0S

thenS R" andDo _C S due toD C_Rn. If0S , t thenxo E 0S andx E (R" ’) will be analyzed separately.
In case x0 tE 0S then Xo Do due to the Strong Smoothness Property. Hence, 0S tqDo and 0S t"ID
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due to D D,, implied by the Weak Smoothness Property CLemma A-l, Appendix). In case x 65 (R" -’)
then x_(t;x) does not converge to J due to the Strong Smoothness Property. Therefore, x Do and

Dfq(R -S)-9 so that D CI(R" -S)- 9. From D CIS "9, D f3c - and D f3O(R" -S)- it results

thatD C_ S. LetN D. Hence, N C_ S and N is open connected neighborhood ofJ, which proves necessity

of the condition 1).
N -D implies (Definitions A-1 to A-3) that 10(Xo)-R., fXo 65N. Let p 65 P(S;f), [p 65Pt(S;[)], be

arbitrarily selected. Hence, there is a solution v to (3.lab), which is defined and continuous on B,, [and
differentiable on B], respectively,

v(x) 65 C(-ff,) [v(x) 65 C"(-ff,)] (4.2)

Let "r C]0, +oo[, "t "t(x0;]’;la’,J), be such that for any x0 65 N the condition (4.3) holds,

x_(t;x0) 65 B,, Vt 65 [x, +o]. (4.3)

Existence of such x is implied by N D Do (Definition A-2). Besides,

x_(+oO;Xo) 65, Vx 65N. (4.4)

After integrating (4.1.a) and using (4.1.b) together with (4.4) we derive (4.5),

,,[x_(t;x0)] , p[x_(O;Xo)]ao, v(,Xo) R.xV. (4.5)

Invariance of Do,D Do,N D, continuity of motions x_ (the weak Smoothness Property), continuity of

p on N, the definition of x (4.3) and compactness of It, ;] for any 65 R/ prove

V(t,Xo) 65 R/xN (4.6)+oo,

(4.2), (4.3) and x(o;xo) x_[o;x;x_ (x;x0)] 65 B for o 65 Ix, +oo] and the condition 3) of Definition 1 yield

p[x(o;x0)]do < +oo, x065N. (4.7)

Now, (4.5)-(4.7) gives

or, for 0 and x xo,

v[x_.(t;xo)]J < +oo, V(t,Xo) 65R+xN, (4.8)

v(x)l < +oo, Vx 65N. (4.9)

Differentiability ofx_ in Xo 65 N,p 65 P(S;./’), [p 65 pI(S;f)], invariance ofN D D,,, (4.5) and (4.8) prove

continuity of v on N, [differentiability of v on N],

vCx) C(N) [vCx) C")(N)] (4.10)

respectively. Invariance of N, positive definiteness ofp on S with respect toJ,N C. S, and (4.5) imply

v(x) > O, Vx 65 (N-J). (4.11)

Now, (4. la), (4.10) and (4.1 1) verify positive definiteness of vonNwith respect toJ [and its differentiability

on N], respectively. Positive definiteness ofp, uniqueness of the motions x_(t;Xo) for every Xo 65 S,N C_. S,

invariance ofNand (4.5) prove uniqueness ofthe solution v to (4. lab). This completes the proofofnecessity

of the conditions 2-a-i) and 2-b-i), respectively.
Let x, be a sequence, x, . as k +o, .f, 65 ON, ON # 9, and x, 65 N. Let 65]0, +oo[ be arbitrarily

selected so that B; CN. Let T, T T,(x,;) 65 [0, +oo[, be the first moment satisfying (4.12),
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x(t’,x)B, Vt E[T,+oo[. (4.12)

Such T exists due to xN and N D Do (Definition A-2). Continuity of x_(t;Xo) in (t,Xo)

N D, D Do Do and D _C S imply T +oo as k +o=. Let m be such a natural number that

x .(N-BOfor all k -m,m + I,.... Such m exists because Nis open,BCN andxk ON ask

Let cx be introduced by

ct- min[p(x)’x _(N-BO]. (4.13)

p P(S;f),[p P(S;f)], guarantees (due to the condition 2) of Definition 1)

ct tel0, +oo[. (4.14)

From (4.6) and (.4.13) we derive (4.15) by setting 0 and x_(0;x,) x,,
t,

v(x)a foculo+ r,p[x_(o.:t)]do, x (N-J), k -m,m + (4.15)

lnvariance ofN -D -Do, positive definiteness ofp on S with respect to J (the condition 1) of Definition

1), N _C S and (4.16) imply

v(x) T x (N-J), k m,m + (4.16)

This result, T + as k + and (4.14) yield v(x) +oo asx ON, x N, which proves necessity

of the conditions 2-a-ii) and 2-b-ii), respectively.

Sufficiency. Let all conditions of Theorem be valid. Then, the set J is asymptotically stable [1, p. 208],
[7, p. 204]. The system (3.lab) has the domain D of asymptotic stability ofJ (Definitions A-1 to A-3).
The condition 1) impliesN S. Two possible cases will be considered: a) the boundary ON ofNis empty,

and b) ON is non-empty.

a) Let ON -. Then N -R" that obviously implies N -D -R" due to the conditions 2-a-i and 2-b-i).

b) Let ON . If OS O# then S R" so that D C.S. If OS ,, then c3S fqD due to (ii) of the Strong

Smoothness Property. This fact as well as that both D and S are neighborhoods ofJ proveD _CS. In
both cases D C_. S. Let now OD , and OD be treated separately. If OD , then the definition

of v as the solution to (4.lab), D _C S and the proof of the necessity part show that v is continuous on

D and v(x) +o as x 0D, x D. These facts, continuity of v on N, N C._ S, the fact that D and

N are connected neighborhoods ofJ and v(x) +oo as x ON, x N, imply

N-D (4.17)

Let now OD . Hence, D R". The solution v to (4.lab) is continuous on D R" as shown in the

necessity part. Hence, v(x)[ < +oo foreveryx ER". Since v(x)---* +ooasx ON,x .N, thenONtqR"

andN -R". Finally, (4.17) holds also in case OD , which proves (4.17) in all cases and completes the

proof.

From the computational point of view the form of the condition "v(x) +oo as x ON, x U.N" is

not suitable. It can be set in another form by utilizing w as used by Vanelli and Vidyasagar [6],
w(x)= 1- exp[-v(x)]. (4.18)

Evidently, the following are true:

a) w is defined and continuous [and differentiable] on S if and only if v is defined and continuous [and
differentiable], respectively, on S,

b) positive definiteness of v on S with respect to J implies positive definiteness of w on S with respect

to J, and vice versa,



108 L.T. GRUJIC

c)

d)

v +oo implies w +1 and vice versa,

the equations (4.lab) are equivalent to the following system

dw(x) -[1 w(x)]p(x)
dt

(4.19a)

w(x)- 0, Vx J. (4.19b)

The facts listed above under a) to d) and Theorem directly yield the next result:

Theorem 2. Let the function v be replaced by w and the equations (4.lab) by the equations (4.19ab) in

Definition 1.

In order for a compact invariant set J ofthe system (3.lab) with the Strong Smoothness Property to

have the domain D ofasymptotic stability andfor a set N, N C_ R’, to be the domain D N -D, it is both

necessary and sufficient that

the set N is an open connected neighborhood ofJ andN C_ S,

(a) for arbitrarily selectedfunction p P(S;f), the equations (4.19ab) have the unique solution w

on N with the following properties:

(i) w is positive definite on N with respect to J,
and

(ii) if the boundary ON ofN is non-empty then w(x) +1 as x ON, x N,

.for arbitrarily selectedp PI(S ;f) the equations (4.19ab) have the unique solution wonNwith

the following properties:

(i) w is &fferentiable on N andpositive definite on N with respect to J,
and

(iO ifthe boundary ON ofN is non-empty then w(x +1 as x ON, x N.

1)
and

9.)

5. GENERATION OF A LYAPUNOV FUNCTION AND DETERMINATION
OF THE ASYMPTOTIC STABILITY DOMAIN FORTHE SYSTEMS
WITH THE WEAK SMOOTHNESS PROPERTY
The class of the systems described by (3.lab) with the Weak Smoothness Property is larger than that

with the Strong Smoothness Property. It is not surprising that the conditions of the preceding theorems

slightly change for the systems with the Weak Smoothness property as follows.

Theorem 3. In orderfor a compact invariant setJofthe system (3.lab) with the WeakSmoothnessProperty
to have the domain D ofasymptotic stability and that a subsetNorS equalsD N D, it is both necessary
and sufficient that

1) the set N is open connected neighborhood ofJ,

2) (a) for arbitrarily selected function p P(R’;f), the equations (4.lab) have the unique solution

function v on N with the followingproperties:

(i) v is positive definite on N with respect to J,
and

(ii) if the boundary ON ofN is non-empty then v(x + asx ON, x N,
or,

(b) for arbitrarily selected function p P(R’;f), the equations (4.lab) have the unique solution

function v on N with the followingproperties:
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(i) v is differentiable on N andpositive definite on N with respect to J, and
(ii) if the boundary ON ofN is non-empty then v(x) + as x ON,x N.

Proof. Necessity. Let the system (3.lab) possess the Weak Smoothness Property. Let the system (3.lab)
have the asymptotic stability domain D and let N-D, for N C_S. Let p P(R";f), [p PI(R";f)], be

arbitrarily selected. From this point on we should simply repeat the corresponding part of the proof of

necessity of the conditions of Theorem in order to show necessity of all conditions of Theorem 3.

Sufficiency. Let the system (3.lab) have the Weak Smoothness Property. Let the conditions of Theorem

3 hold. Then, the invariant setJ is asymptotically stable. The system (3. lab) has the domainD ofasymptotic

stability ofJ (Definition A-3), which equalsDo (Lemma A-l). Letx0 (R" -N). Continuity ofx_ (t ;x0) in

I0 due to the Weak Smoothness Property, positive definiteness of p on R" due to p P(R";.f),
[p PI(R ;.f)], negativeness of O(x) on (R" N) guaranteed by positive definiteness ofp onR" and (4. lab),
and the condition 2-a-ii), [2-b-ii)], respectively, imply x_(t;x0) (R" N) for all I0. Hence, D _C N.
Furthermore, (4.1a) and positive definiteness of p on R" imply (see the proof of the necessity part of

Theorem 1) v(x) +o as x OD, x D, which together with the condition 2-a-i), [2-b-i)], respectively,
implies OD fqN , t. This result,D N and the fact thatD is a neighborhood ofJ implyD N and complete
the proof.

The counterpart to Theorem 2 in this framework is the next result that follows directly from Theorem

3 and (4.18).
Theorem 4. Let the function v be replaced by w and the equations (4.lab) by the equations (4.19ab) in

Definition 1.

In order for a compact invariant set J of the system (3.lab) with the Weak Smoothness Property to

have the domain D ofasymptotic stability and that a subset N ors equalsD N D, it is both necessary

and sufficient that

1) the set N is open connected neighborhood ofJ,
and

2) (a) for arbitrarily selected function p P(R;f), the equations (4.19ab) have the unique solution

w on N with the followingproperties:

(i) w is positive definite on N with respect to J, and
(iO if the boundary ON ofN is non-empty then w(x + as x ON, x N,

or

(b) for arbitrarily selectedfunction p P(R;f), the equations (4.19,ab) have the unique solution

w on N with the followingproperties:

(i) w is differentiable on N andpositive definite on N with respect to J, and
(ii) if the boundary ON ofN is non-empty then w(x + as x ON, x N.

6. GENERATION OF A LYAPUNOV FUNCTION AND ASYMPTOTIC STABILITY
The classical problem of the Lyapunov stability theory has been the problem of the necessary and

sufficient conditions for asymptotic stability (without determination of the asymptotic stability domain).
It generated the problem of the necessary and sufficient conditions for an exact, direct and one-shot con-

struction of a system Lyapunov function. The solution to these problems results directly from the proof
of Theorem and Theorem 3 in the following form.

Theorem 5. In orderfor a compact invariant setJ ofthe system (3.lab) with the WeakSmoothnessProperty
to be asymptotically stable it is both necessary and sufficient that

1) .for arbitrarily selectedfunctionp obeying the conditions 1) and 3) of(i) ofDefinition 1, the equations

(4. lab) have the unique positive definite solution function v with respect to J,
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0,

2) for arbitrarily selectedfunction p obeying the conditions 1) and 3) of (i) and (ii) ofDefmition I, the

equations (4.lab) have the unique eh’fferentiable positive de.finite solution function v with respect to

J.
This theorem, Theorem and Theorem 3 show that the condition 2) of (i) of Definition 1 is needed

only for the exact determination of the asymptotic stability domain D ofJ.
By making use of (4.18) the solution can be stated in terms of the solution w to (4.19ab).

Theorem 6. Let the function v be replaced by w and the equations (4.lab) by the equations (4.19ab) in

Definition 1.

In order.for a compact invariant set J of the system (3.lab) with the Weak Smoothness Property to

be asymptotically stable it is both necessary and sufficient that

1) for arbitrarily selectedfunctionp obeying the conditions 1) and 3) of(i) ofDefinition 1, the equations
(4.19ab) have the unique positive definite solution w with respect to J,

for arbitrarily selectedfunction p obeying the conditions 1) and 3) of (i) and (ii) ofDefinition 1, the

equations (4.19ab) have the unique differentiable positive definite solution function w with respect
to J.

7. EXAMPLES
Example 1. Let a simple second order nonlinear system (3.lab) have the following specific form:

dx 2)d-7-(1-Ilxll (10o- Ilxll )x (7.1)

The system has the set S, of the equilibrium states,

s,- (x:llxll -0 or Ilxll or Ilxll 10}. (7.2)

The set J,

J {x: xll 1, (7.3)
is a compact invariant set of the system. From (7.1) and (7.2) it follows that the system possesses the Strong
Smoothness Property with the set S given by

s {x: Ilxll < 10}. (7.4)
Let the functionp be selected in the form

0 Ilxll - 1,
pox)-

(llxil_)llxll Ilxll 1.
(7.5)

It is differentiable on R and positive definite on R with respect to the set J (7.3). The solution function

v to (4. lab) forp defined by (7.5) is obtained in the form

v(x) xll’- 1 (7.6)
[98(100_11x11), Ilxll 1.

The function v is defined, continuous and differentiable on the set S (7.4). Hence, p P(S;f). Besides,

the function v is positive definite on S with respect toJ (7.3) and v(x) +oo asx OS, x S, where

0s (x: Ilxll 10}.
Since the set S is open connected neighborhood of the set J (7.3) then all the conditions of Theorem 1 are

satisfied for the set N -S (7.4). This means that the domain D of asymptotic stability of the compact
invariant setJ (7.3) of the system (7.1) equals S,
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D -S {x: Ilxll < 10}.
Since the system is simple this result can be easily verified.

Exalnple 2. Let a third order nonlinear system (3. lab) be described by

dx 2.10’{1 sin[n(2 lO’)-t(xrnx lO)2]}(xrnx- 10)
xd-" ncos[n(2 10’)-’ (xrHx 10)2]

-./(x),

-?6110 4
H -4 10 -Hr.

-6 2

The matrix H is positive definite. The closed invariant set J of the system is

J {x :xrHx 10}.
The system possesses the Strong Smoothness Property with the set S given by

S {x :xrnx < 110}. (7.9)
The set S (7.9) is open connected neighborhood ofJ (7.8). Let the functionp be accepted in the next form:

0 x_J
p(x)=

4(xrHx 10)xrHx x (R3-,]).
(7.10)

The function p is defined, continuous and differentiable on R 3, and positive definite on R with respect to

J. It leads to the following solution function v to the equations (4.lab),
0 x j

(7.t)v(x)-
-In{I-sin[n(2. 104)-l(xrHx 10)2]}, x (R3-,]).

The function v (7.11) is defined, continuous and differentiable on S. Hence, the function p belongs to

Pl(S;f). Furthermore, the function v (7.11) is also positive definite on S with respect toJ. Besides,

v(x) + as x OS {x :xrHx 100}. (7.7)

All conditions of Theorem have been verified. Hence, the system (7.7) has the domain D of asymptotic

stability ofJ, which equalsN S,

D -S {x:xrHx < 110}.

(7.7a)

(7.8)

8. CONCLUSION
Nonlinear time-invariant systems characterized by the smoothness properties are considered. The

problems of the necessary and sufficient conditions for an exact direct construction of a system Lyapunov
function, for asymptotic stability of a compact invariant setJ and for the exact determination ofits asymptotic

stability domain are solved algorithmically. This means that the invariant setJ is asymptotically arable if

and only if the solution v to -p (4.1a) with v(x) 0 on J (4.1b) is positive definite [and differentiable]
for any p .P(S;f), [.p PI(S;f)], respectively. The equation (4.1a) is to be solved only for one aueh

arbitrarily selectedp. If the solution v is positive definite with respect to J thenJ is asymptotically stable.

However, if the solution v is not positive definite with respect to J then J is not asymptotically stable. In
the latter case there is not sense to try solving 9 -p with any other function p. These statements result

from Theorem 5 that together with Theorem 6 opens new direction onto the asymptotic stability analysis.
The complete sets of conditions for the exact determination of the asymptotic stability domain ofJ

are given in various forms of Theorem to Theorem 4. They establish essentially new approach to solving

the Lyapunov stability problems.
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If the setJ {0} and the system (3.lab) is linear then Theorem 5 becomes a generalization of the

well known criterion for asymptotic stability of the zero equilibrium state of time-invariant linear systems

[5, p. 76].
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APPENDIX A-I. DEFINITIONS OF STABILITY DOMAINS

Definition A-1. A setJ of the states of the system (3.lab) has the domain D,(J) ofstability if and only if

tbr every mepsilon ]0, +oo[ there is a neighborhood D,(e;J) of the set J such that x_(t;xo) belongs to the

e-neighborhood B,(J) of the set J for all E[0,+oo[ provided only that Xo D,(e;J) and that

D,(J) U[D,(e’,J): e ]0, +=o[ ].

Definition A-2. A set J of the states of the system (3.lab) has the domain Do(J) ofattraction if and only

if there is a neighborhood Do(J) of the set J such that lim{p[x(t;x0),J]: +*]. -0 provided only that

xo Do(g ).

Definition A-3. A set J of the states of the system (3.lab) has the domain D(J) ofasymptotic stability if

and only if it has both the domain D,(J) of stability and the domain Do(J) of attraction and

D(J D,(J f’I D,(J ).

A-II. PROPERTIES OF STABILrrY DOMAINS

LemmaA-1. Ifthe system (1) possessing the WeakSmoothnessPropertyhas the domainD(J ofasymptotic
stability ofa set J then

Do(J) C_ D,(J) and Do(J) D(J).

Proofi Let the system (3.lab) possess the Weak Smoothness Property and have the domain D(J). Then

it has also the domains D(J) and D,,(J) (Definition A-3). Letx0 Do(J). Then, Definition A-2 and (i-b)
and (ii) of the Weak Smoothness Property imply max{p[x_(t’,Xo),J]:te[O,+oo[}-m(x0) < +oo. Hence,
for e[m(Xo),+oo[,x(t’,Xo)B,(J),Vte[O,+oo[, which proves XotED(e;J), hence, xoD,(J) and

Do(J) C_ D,(J). The last result and D(J)- D,(J)tqD,(J) prove Do(J)- D(J).
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