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ABSTRACT. In this paper we conduct the error analysis of two models

used to simulate the disease profiles in plant pathogen epidemics.

The role of the various model parameters is discussed in relation to

accuracy.
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1. INTRODUCTION

In the study of epidemiology various mathematical techniques

have been used to understand the dynamics of the growth of infection

and related phenomena. However, the mathematical basis of some of

the concepts needed streamlining. By considering the interplay

between pathogen and healthy plant tissues a model for growth of

infection was constructed by Pokhariyal [1].

Malice & Kryscio [2] formulated a simple stochastic model and

showed that the process describing infectious contacts between

individuals has a major effect on the comparison of different

models. Braker [3] considered simple compartmental models for

infectious disease with exposed and infective periods of fixed

length. He studied the threshold phenomena and the stability of

endemic equilibria. A model for the evolution of viruses proposed by

Rishe & Lipkind [4] a11ows the computer assisted determination of

ancestory among viruses.

We first discuss the role of the various parameters that

describe the disease profile. The initial inoculum, denoted by x(O),
which is usually very sma11. The latency period, denoted by p, which

is the time taken for newly infected tissues to become infectious.

The constant of proportionality, denoted by r, whose dimension is

the reciprocal of time. The asymptote of the curve, denoted by a,
where x(O)<al.

The analysis of the observed rate of infection dx(t)/dt
indicates that at the critical oint (denoted by tc) it goes through
a maximum value (denoted by m) as shown in [I]. This factor is
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important because it gives a precise measure for determining the

degree of accuracy of the simulated profile denoted by x (t) with

respect to the sigmoid profile x(t). It therefore, enables us to

compare various simulation models from the point of accuracy and

conduct the error analysis.

The integral equation for x(t) is implicit, as shown by

Pokhariyal & Rodrigues [5], therefore one has to use numerical

solutions, that need simulations. The implications of the simulated

models are discussed with respect to accuracy.
2. MODEL DEFINITIONS AND ANALYSIS

In the study of the theoretical model [5], we noticed that the

proportion of infected tissues x(t) can be said to increase at a

rate dx(t)/dt, which is affected by the factors:

(i) x(t)-x(O), the proportion of plant tissue infected by the

progeny of the parent inoculum x(O).

(ii) r, a positive time constant, that can be interpreted as an

indicator of the average state of the disease.

(iii) a-x(t), which represents the proportion of healthy tissues

that is effectively susceptible, at any time.

The model equations for the three stages are:

latency stage

dx(t)/dt=0, 0tp, (2.1)

growth stage

dx(t)/dt=r{x(t)-x(o)}{a-x(t)}, t>p, r>0, x(0)<aKl (2.2)

and asymptotic stage

dx(t)/dt 0, as t .
Combining the three time stages, through the proportionalities,

into one equation, we have

dx(t)/dt r{x(t)-x(o)}{a-x(t)}, 0Kt<, r>0, x(0)<aKl, (2.3)

which describes the dynamics of the epidemic for all t. The implicit

solution of (2.3) can be written as:

t{x(t)-x(0) }at]x(t)=a-{a-x(0)}exp [-r I0
0t<, r>0, x(0) <a K 1 (2.4)

It is noticed that for all practical purposes, the infected
proportion x(t) does not change after the time p+I and can be
assumed to differ by a small positive number 6 from the asymptote
a. Thus, a-x(t) < 6, for tap+I, where I denotes the growth period of
the epidemic.

One of the characteristic feature of the sigmoid profile x(t)
is its point of inflection, where the infection rate dx(t)/dt goes
through a maximum value m at the critical time t (see [I]), which
gives c

x(tc) {a+x(0)}/2 (2.5)
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From (2.5) and (2.3) we get

m dx(t )/at r[{a-x(O)}/2] 2 (2.6)c
which gives the maximum rate of infection. Putting t=t

c
into (2.4)

and using (2.5), we get on simplification

rtc{a-x(0)} 2 in2 1.3862 (2.7)

This relationship can be utilized to effect a control strategy [5].
The accuracy of the simulated solution of (2.4), denoted by

x (t) can be checked by analysis at the critical point tc. The

equation (2.5) can not be used as an indicator of accuracy since any

simulation that goes through x(O) and a must pass through their

average {a+x(O)}/2 at a time which may be quite different from tc.
On the other hand if dx (t)/dt attains a maximum value that

approaches m given by(2.6),then this indicates the convergence of.
x (t) to x(t). Thus m can be used to judge the accuracy of

simulation.

3. TWO STAGE SIMULATION MODELS

The simulation models are used to evaluate (2.4) by introducing

functions that would approximate x(t)-x(O) in some sense and a11ow

the development of a suitable recursive scheme to calculate the area

under this curve. By considering two functions in this manner,

correspondingly two models are developed.

SIMULATION MODEL IN EPIDEMIOLOGY I (SME1)
We introduce a function x(t-p), such that

x(t-p)=0, 0tp (3.1)a

graph x(t-p) graph x(t), delayed by p-time units. (3.1)b
We notice that during otp, the function x(t-p) behaves

exactly like x(t)-x(O) and for very large t (when t) the function

x(t-p) differs from x(t)-x(O) by x(O). Thus at low initial inoculum

levels (when x(O)a), the function x(t-p) is a reasonable

approximator (bearing in mind that during growth state I, its

acceptability as an approximator depends on wheter the value of p
is small as compared to I). These deductions are purely from

graphical considerations implied by (3.1)b and the graphs of Fig. I.

Thus SMEI, with x(t-p) as approximation to x(t)-x(O) in (2.3)and (2.4) respectively, may be written as:

dXl(t)/dt=rl Xl(t- P ){a-xl(t)}, 0t<,rl>0, x(0)<al (3.2)
xI (t)=a-{a-x(0) t}exp [-rll0X1 (t-p)dt], 0t<, rl>0, x(0)<al (3.3)

where the subscript 1 is used to distinguish the computed modelprofile from the theoretical model profile x(t). On comparison, wenotice that the parameters a and x(O) are unchanged. However, thetime constant for the computed model has to be changed as the areafunction it is associated with has altered and hence we denote itby rI
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Fig. 1. In this case the infection proportion z(t), at any time, given by z(t) a- {a- x(O)}
ezp[- r f {z(t)- z(O)}dt] is compared with the curves {z(t) z(O)} and z(t p).

The rate of growth of the theoretical profile dx(t)/dt at t=p

is continuous, whereas the rate of growth of the computed profile

dXl(t)/dt indicates a discontinuity at t=p. A closer inspection of

SMEI defined by (3.2) and (3.3) shows that in the neighbourhood of

t=p,
dxI (p-e) Idt=0, for any e>0 (3.4)a
dxI (p+e)Idt rlx (0) {a-xI (p+e) } for 0egp (3.4)b
dxl(p+e)Idtrlx (0){a-x(0)} as e0 (3.4)c
It can be deduced that xl(P4) > x(p+) where e is small and

positive since xI (p)=x(p)=x(O). Thus smaller values in (3.4)b imply
smaller deviations immediately after p, which provides a measure for
the parametric error ep which should be very small compared to one:

ePl=rI x(0){a-x(0)) <<i (3.5)

Furthermore, as increases in the interval "O<egp, the value of
xI (p+e) remains nearly constant, since its rate is determined by
(3.4)b, a restriction that x(p+e) does not experience because it
traces the exact sigmoid profile, given by (2.3). Thus for some
value of e e’ say,

x(p+e’) > xl(p+e’)= constant of order x(0), 0<e’p (3.6)
This deviation becomes more significant for large value of p.

In other words, since the growth rate for p<t2p is nearly constant,
this has a ’stifling effect’ on xl(t) during pt2p. It is only when
t2p, that Xl(t) is freed from this ’stifling effect’ and able to
move in accordance with the dynamics of the epidemic. Since the
period for the phenomena is p, the larger its value the greater
will be the deviation of Xl(t ) from the true profile x(t), during
the growth stage pt<p+I. The case p=I brings this out vividly
because at t--p+I, the profile x(p+I) approaches the asymptote a,
whereas xl(P+I) is nearly of the same order as x(O), a difference
which is unacceptable (Fig. 2).
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Fig. 2. In this case, the infection proportion x(t), at any time, given by z(t) a- {a- z(0)}
ezp [-r f{z(t)- z(0)}dt] is compared with the curves {z(t)-z(0)} and x(t- p) for the situation
when p is large and p I.

Thus, in general, the consequence of increasing the ’stifling

period’ p is that the computed profile xl(t) would asymptote towards

a, at time increasingly greater than p+I.

SIMULATION MODEL IN EPIDEMIOLOGY 2 (SME2)

The inaccuracy of SMEI in matching the true profile confirms

the inadequacy of the function x(t-p) as a approximation of

x(t)-x(O) during the growth stage. To overcome this problem, we

define a picewise continuous function g(t) (see [5]), such that

g(t)=0, 0t<p (3.7)a

g(t)=x(t-h), h<p, tzp (3.7)b

where h represents the ’time shift’ However, in the functional

sense x(t-h) is defined as x(t-h)=O, 0t<h and graph x(t-h) graph

x(t), delayed by h time units. Thus from purely graphical

considerations, we have

g(t) x(t)-x(0) as h0, x(0)<<a (3.7)c

The error of such an approximation can be made as small as we

wish by choosing a smaller value of h. Hence SME2, with g(t) as an

approximation to x(t)-x(O) in (2.3) and (2.4) respectively, may be

written as

dx2(t)/dt=r2 g(t){a-x2(t)} 0t<, r2>0, x(0)<al (3.8)

r tx2(t)=a-{a-x(0)}exp[-210g(t)dt], 0t<, r2>0, x(0)<al (3.9)

Where the subscript 2 defines the profile of SME 2.

We notice that in the vicinity of t=p

dx2(P-e)/dt=0 for e>0 (3.10)a

dx2(P+e)/dt=r2 x(0){a-x2(P+e)} for 0Keh (3.10)b

dx2(P+e)/dt r2x(0){a-x(0)} as e0 (3.10)c

These equations indicate that the derivative function is

discontinuous at t=p, as in the case of SMEI. However, the

corresponding ’stifling period is now equal to h (time shift). Thus

decreasing h reduces the impact of the stifling effect and yields
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increasingly accurate profiles provided that the product of

parameters in (3.10)c is small compared to one i.e the parametric

error

eP2=r2 x(0){a-x(0)} << 1 (3.11)

4. SIMULATION GUIDELINES AND DISCUSSION

The following guidelines are observed to simulate the

theoretical profile x(t), SMEI profile,xl(t) and SME2 profile x2(t),
that are denoted by x (t), xl(t) and x2(t) respectively.

(i) We use Simpson’s rule, with a step length h<p, to evaluate

the area under the curve in (3.3) and (3.9).

(ii) We check that dXl(P+e)/dt and dx2(P+e)/dt are much smaller

than 1 at the start of the growth stage. This would ensure good

simulation accuracy since the respective parametric errors ePl and

eP2 are i.

(iii) We find mI and m2, the maximum growth rates of Xl(t) and x2(t)
by computing the values using (3.2) and (3.8) respectively and then

picking out the maximum value in each case. These values are then

compared with the value given by (2.6), which would then give an

indication of overall accuracy of Xl(t) and x2(t).
From various simulations that have been carried out by Vander

Plank [6] and in [5], we notice that SME2 is relatively more

accurate as compared to SMEI and VPRM (Vander Plank’s removal

model). The accuracy of SME2 is greatly improved when the step

length is reduced and the long growth stage I attained with CMEI

shrinks drastically with SME2. This is due to the significant

reduction of the stifling effect. Thus smaller values of h give more

accurate profiles that have shorter growth stages and the simulation

x2(t) converge to the exact profile x(t) as h approaches zero. The

benefit of these mathematically complex models over the simpler

model discussed in [6] is improved accuracy of the simulation

provided the parametric error condition is satisfied which in

general holds since the level of initial inoculum x(O) I.
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