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ABSTRACT. We consider the problem of testing the stability of regression parameters in

regression lines of different populations when some additional, but unidentified, data sets from

those populations are available. The standard test (To) discards the additional data and tests the

stability, of the regression parameters using only the data sets from identified Iopulations. We
propose two test procedures (T1 and T2) utilizing all the available data, because the additional

data may contain information about the parameters of the regression lines which are tested for

stability. A power comparison among the tests is also presented. It is shown that T1 always has

larger power than To. In certain situations T2 has the largest power.
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1. INTRODUCTION. Consider the regression model

Yij ai + #i(xij ) + ij, i= 1,2 k, j= 1,2,...,ni, (1.1)

where the Yij are observations on the response variable, the xij are observations on the predictor
variable, a and #i are the regression parameters, and the ij are the error terms, which are

unobserved random variables. It is assumed that the errors are independent, normally distributed

random variables with mean 0 and common unknown variance o2. For the model, ai + #i(xij" )
is the regression line of the variable y on the predictor variable x for the th group, a is the y-
intercept when x x, and #i is the slope. Suppose we have m (m _< k) additional data sets

corresponding to m regression lines whose model is given by

Yij =ai +i(xij )+ij, i=k+l k+m, j=1,2 hi. (1.2)

We assume that the error terms il in model (1.2) are independent, normally distributed random

variables with mean 0 and common unknown variance o2. It is further assumed that the m

regression fines in model (1.2) are an unknown subset of the k regression lines in model (1.1).
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However, we cannot identify the m regression lines associated with the additional data sets (Yii,
xij, k + k + m, 1,2 ni). We are interested in testing the null hypothesis Ho: , a2 --...
Ok; 1 2=... #k against Ha: either ’i * ai’ or i * i’ for at least one pair (i,i’), where i, i’,

i,i’= 1,2 k, utilizing all the available data. The null hypothesis implies that all the k regression
lines in model (1.1) are coincident whereas the alternative hypothesis is that at least two of the

regression lines are different. The standard test (To) of H0 against Ha using the k data sets (Yij,
xij, i= 1,2 k, j= 1,2 ni) is well-known in the literature and has diverse applications. A
biostatistician may be interested in testing the equivalence of regression lines for predicting the

systolic blood pressure using age as the predictor variable for four social groups. A test for the

stability of the regression parameters that generated the data sets is Ho" ’2 3 4; fl

#2 #3 #4. If H0 is true, we use a single regression line based upon the four data sets for

predicting systolic blood pressure using age as the predictor variable, Klienbaum and Kupper [1].
An economist might be interested in testing the equivalence of multiple regression models for

predicting the gross domestic product using labor and capital as predictor variables for different

time periods, Maddala [2].
In this paper we consider two tests (T1 and T2) utilizing all the available data and make a

power comparison between these two tests and the standard test which is based solely on the k

data sets relating to the regression lines whose parameters are tested for stability. In Section 2 we

determine least squares estimates of the regression parameters to obtain the test statistics for the

problem. The noncentrality parameter of the tests is derived in Section 3. In Section 4 we derive

our proposed tests, T and T2. We illustrate and compare the power of all three tests in Section

5.
2. LEAST SQUARES ESTIMATES. Consider the sum

k+m n
0

i=l
E j=IE (Yij "i’’i(xij .))2, (2.1)

where i and/i are the estimates of regression parameters a and/i (i= 1,2 k+m). The least

squares estimates of the regression parameters are obtained by differentiating 0 partially with

respect to i and/i and then solving the resulting normal equations fori and B’i. It can be shown

that the least squares estimates ofa and/i are given by

ni
ai^ j=lX:Yij/hi (2.2)

and

ni ni
/0’ I lYiJ (xij )/1 (xij )2.

j= j=l
(2.3)

Then R2, the unconditional error sum of squares, is obtained by substituting i and/’i given by
(2.2) and (2.3) into0. It can be shown that

k+m n k+m
I2 2 (Yij .-)2 /i2 Si2 (2.4)R2
i=l j=l ]=1

where
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ni
Si2 ]2 (Xij )2, 1,2 k+ m.

j=l
(2.5)

The conditional error sum of squares under H0 is obtained by minimizing

k n k+ rn n
1 i=lr j=lr" (Yij--/(xij .]))2 +i=k+r, 1 j=lI (Yij-ti-/’i(xij .))2 (2.6)

with respect to, ’, ti, and/i (i k + k + m).
The second sum on the right-hand side of (2.6) is minimized with respect to i and i

(i=k+ 1 k+m) where and/i are defined, respectively, as in equations (2.2) and (2.3). The
least squares estimates of the regression parameters a and # are given by

k n

ly (2.7)a r, 1 ij/n=y
i=lj=

k n k
/ r, r, Yij (xij )/i r, Si2 (2.8)

i=l j=l "=1

where

k
n= Iz ni. (2.9)

i=l

The conditional error sum of squares under H0 is

k n k k+ rn n k+ rn
R r, r, (Yij "y--)2./2 I Si2 + v, (Yij "’t)2 V,/i2 Si2

i=1 j=l i=1 i=k+l j=l i’=k+m (2.10)

The sum of squares for testing the null hypothesis H0 is

SSH0 R12 -I
k k k
I ni]- y--)2 + lI/’i2 Si2 -/2 Si2
i=l i=l i=l,

k k
1 ni- y--)2 + I Si2 i’)2,
i=l i=l

where

k k
/ Si2/i/ Si2.

i=l i=l

It is well-known in the literature that 12/02 is distributed as chi-square with

k+m
n’--n+ r ni-2(k+m)

i=k+l

(2.11)

(2.12)

(2.13)
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degrees of freedom and SSHo/o2 is distributed as noncentral chi-square with 2(k-l) degrees of
freedom. When H0 is true, SSH0/o2 is distributed as chi-square with 2(k-1) degrees of freedom.

Further, l2 and SSH0 are independent; for example see Kshirsagar [3].
3. NONCENTRALITY PARAMETER. Here we derive the expected value of SSH0 under the
non-null case. It can be shown that

k k k k
r. ni(-y-)2 r ni(ai--)2 + r. ni(7--) 2 + 2 r. ni(ai--)(7--),
i=1 i=1 i=1 i=1

(3.1)

where

k-= r. niai/n
i=l

(3.2)

k
r ,ij/ni,
i=l

(3.3)

k-= E ni/n.
i=l

(3.4)

Now

and

where

Taking expectations of both sides of (3.1) we obtain

k k
E(.r, niC-y-)2) r, ni(ai--)2 + (k-1)a2.

1=1 i=1

k k
E( x: i2 Si2 Si2 (o2/Si2 +/i2

i=l i=l

k
k o2 + 1 #i2 Si2

i=l

k k k
E(/2 p. Si2) Si2(a2/ Si2 +2),

i=l i=l i=l

k
=02 +-2 Si2,

i=l

k k= Si23i/ Si2.
i=1 i=l

(3.5)

(3.6)

(3.7)

(3.8)

Using equations (3.5), (3.6), (3.7), and (2.11) we get

k k
E(SSH0) 2(k-1)o2 + r, ni(ai--)2 + r, Si2(Bi--)2

i=l i=l
(3.9)
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Since SSHo/o2 is distributed as noncentral chi-square with 2(k-l) degrees of freedom, it

follows from (3.9) that the noncentrality parameter is given by

k k
,x (1/02)[ 12 ni(a .-)2 + r, Si2 (fli .-)2 ]. (3.10)

i=1 i=1

4. TEST PROCEDURES. The standard procedure for testing Ho agaimt Ha is an F-test based

upon the test statistic

F0 (SSHo/2(k-1))/(R02/(n-2k)), (4.1)

where

k n k
I2 I2 (Yij .)2 I2 $i2Si2 (4.2)RO2
i=lj=l i=l

See, for example, Kshirsagar [3]. The above test rejects the null hypothesis H0 if F0 >

F,,2(k.),,. and accepts H0 otherwise, where F,f ,f 2 is the upper 100a percentile point of the

F-distribution with fl numerator degrees of freedom (ndf) and f2 denominator degrees of

freedom (ddf). We note that the standard test is based upon the k data sets (Yi], xi], i= 1,2 k,
1,2 ni) and discards the additional data (Yi], xi], k+ 1 k+ m, 1,2 ni).

Consider the following test procedure (T1). Rejct H0 if

F1 (SSHo/2(k-1))/(R0/n’) > Wa,2(k.1),n, (4.3)

and accept H0 otherwise. A comparison between TO and T1 shows that both have the same ndf

but that the latter has larger ddf than T0. We further note that T1 is based upon all the available

data. Under the non-null case, both test statistics have noncentral F-distributions with the same

noncentrality parameter, as in (3.10). Therefore F1 will have larger power than F0, Graybill [4].
When the m regression lines in (1.2) are an unidentified subset of the k regression lines in

the model (1.1), testing Ho against Ha is equivalent to testing I- the k+m regression lines are

identical agaimt I-1: at least two of them are different.

Following the procedure outlined in Section 2, it can be shown that the sum of squares for

testing I- is

where

k+m k+m
SSI-I I hi(8 .&,,)2 + I Si ./,)2, (4.4)

i=l i=l

k+m k+m
a . ni r, ni, (4.5)

i=1 =1

k+m k+m
/’

i= 1Si2/i/i’=ll Si2 (4.6)

The sampling distribution of SSX--e2, when H is tree, is noncentral chi-square with 2(k+ m-l)
degrees of freedom and noncentrality parameter
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where

and

k+m k+m
,X’= (1/o2)[ E ni(ai-a)2 + :E Si2(fli-3)2l, (4.7)

i=l i=l

k+m k+m
a I2 niai/ Z ni, (4.8)

i=l i=l

k+m k+m
/ E: Si2/i/i I2 Si2 (4.9)

i=l =1

We note that SSI-I can be obtained from SSH0 by replacing k with k+ m. When I- is true, the

sampling distribution of SSHo2 is chi-square with 2(k+ m-l) degrees of freedom. Further, SSI-I
and R2 are independent.

We use an F-test (T2) to test I- against based upon the test statistic

F2 (SSIf’l)/(l2/n’), (4.10)

where 2(k+ m-l). We reject H if F2 > F,,fl,n, and accept I otherwise. When I is true,

the sampling distribution of F2 is noncentral F with ndf and n’ ddf and noncentrality parameter

a’. We use noncentral F-distribution tables to compute the power of the tests. The next section

illustrates and compares the power of these three tests.

5. POWER COMPARISONS OF THE TESTS. When H0 and I- are not true the test statistics

(4.1), (4.3), and (4.10) follow noncentral F-distributions. The non-null distributions of the test

statistics F0 and F1 have the same noncentrality parameter, a, defined in (3.10). The

noncentrality parameter for the non-null distribution of F2 is x’ as defined in (4.7). The ndf for

both TO and T1 is f 2(k-l). For T2 the ndf is 2(k+ m-l). To has ddf f2 n-2k, while the

ddf for Tx and T2 is n’ as defined in (2.13).
Tables 1, 2, and 3 illustrate the powers of TO and our proposed tests, T1 and T2. We chose

, 0.05 and situations involving k 4 regression lines. The number of data sets considered from

unidentified populations is m, where 1 _< m_< k. For simplicity we use equal sample sizes (ni 10)
for the k identified populations and equal sample sizes (n) for the m unidentified populations.
From our earlier notation n nk+ (i 1 m). Tables 1, 2, and 3 differ in the magnitude of ni.

In the tables we denote the noncentrality parameter for the power of test T as i. The

power of each test is a function ofai and the relevant degrees of freedom. As indicated above, a0

" 1. For m k, each,x is a specific value. For m < k, ,x 0 and,x are (the same) specific values,
but ,x 2 varies depending upon which unidentified populations produce the m data sets. For this

reason we calculate the tests’ powers for selected sets of k regression lines and values of Si2 The

differences between the parameters of these lines together with Si2 and a2 affect ,x i. The

parameters of the k lines, Si2 and2 were chosen to produce the three values indicated for ,x 0, so

that the power of TO is about .25, .5, and .75. If TO has very small power, then additional data

provide very little improvement. Conversely, when the power of TO is very large, there is little

need for improvement with additional data.

Examinations of the tables produce the following observations. The powers of TO are the
same in all three tables because this test ignores the additional data sets. For a given,x 0 (and,x 1)
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the power of T is always greater than the power of TO consistent with Graybill’s conclusion [4]
that for a given ndf the power of the test increases as the ddf increases. Also, in each table the

power of T1 increases as m increases, because the ndf remains at 2(k-l) while the ddf increases by

n-2. Likewise, for each value of m the power of T increases from Table through Table 3

because the ddf increases as a result of the n increasing from 5 to 7 and finally to 10.

The power of T2 is heavily influenced by the choice of regression lines for the additional

data when m < k. In each table the power of T2 does not consistently increase as m increases.

The increases in,x 2 and ddf are sometimes offset by the increase in of 2m. For each value of m
the power of T2 generally increases from Table through Table 3 because of the same increase in

ddf as for T, But as Table 1 indicates, for small n relative to n the power of T2 may be lower

than the power of T0, and is seldom much better than the power of T1. In Table 2 when the n
approaches ni in size, improvements in the power of T2 over the power of T are noticeable.

Table 3 indicates that when the n equal ni, T2 is superior to the power of T1 except occasionally
for small m.

6. APPLICATIONS. Using additional data from unidentified populations improves the power of
the test for stability of the parameters in k regression lines. The only requirement is that the error

terms of the regression lines from all populations have a common variance. The power of our

proposed test, T1, is always greater than the power of the standard test, T0. If m, the number of

data sets from unidentified populations, is close to k and if the n are near the ni, then T2 can

produce a larger increase in the power than T1. If m is small or if n is small relative to ni, then

T1 may be a better choice than T2.

noncentrality parameters Power of the tests
m A0,A1 )2 TO T1 T2

4 4.454 6.681 .2502 .2622 .2409
4 9.085 13.627 .5016 .5252 .5069
4 14.866 22.299 .7500 .7750 .7744

3 4.454 5.707 to 6.440 .2502 .2598 .2233 to .2518
3 9.085 12.012 to 12.770 .5016 .5205 .4803 to .5105
3 14.866 19.191 to 21.353 .7500 .7701 .7299 to .7858

2 4.454 4.895 to 6.240 .2502 .2570 .2115 to .2684
2 9.085 10.648 to 12.055 .5016 .5151 .4645 to .5243
2 14.866 16.601 to 20.564 .7500 .7645 .6944 to .8050

1 4.454 4.650 to 5.248 .2502 .2539 .2256 to .2536
1 9.085 9.784 to 10.405 .5016 .5089 .4738 to .5029
1 14.866 15.637 to 17.399 .7500 .7579 .7139 to .7687

Table 1
Power of the F-tests for a .05 k 4 n 10 n 5
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m
noncentrality parameters Power of the tests

A0, A1 "2 TO T1 T2

4 4.454 7.572 .2502 .2674 .2836
4 9.085 15.444 .5016 .5353 .5914
4 14.866 25.273 .7500 .7851 .8522

3 4.454 6.178to 7.228 .2502 .2643 .2481to.2913
3 9.085 13.127 to 14.217 .5016 .5294 .5388 to.5810
3 14.866 20.826 to 23.919 .7500 .7792 .7874 to .8529

2 4.454 5.071 to 6.954 .2502 .2606 .2228 to .3057
2 9.085 11.287to 13.243 .5016 .5221 .5014 to.5832
2 14.866 17.295 to 22.843 .7500 .7718 .7271 to .8616

4.454 4.717to 5.519 .2502 .2560 .2310 to.2692
1 9.085 10.022 to 10.854 .5016 .5131 .4900to .5287
1 14.866 15.900to 18.261 .7500 .7624 .7283 to .7977

Table 2
Power of the F-tests fora =.05 k=4 n 10 n =7

m
noncentrality parameters Power of the tests
)0,’ "2 ’ro T1 T2

4 4.454 8.908 .2502 .2730 .3498
4 9.085 18.170 .5016 .5459 .7024
4 14.866 29.732 .7500 .7955 .9270

3 4.454 6.867 to 8.404 .2502 .2695 .2851 to .3522
3 9.085 14.776 to 16.373 .5016 .5393 .6189 to .6756
3 14.866 23.220 to 27.749 .7500 .7891 .8539 to .9207

2 4.454 5.336 to 8.026 .2502 .2650 .2395 to .3632
2 9.085 12.230 to 15.025 .5016 .5306 .5540 to .6643
2 14.866 18.336 to 26.262 .7500 .7805 .7703 to .9210

1 4.454 4.807 to 5.883 .2502 .2589 .2383 to .2909
1 9.085 10.343 to 11.461 .5016 .5188 .5119 to .5633
1 14.866 16.254 to 19.425 .7500 .7683 .7470 to .8330

[1]

Table 3
Power of the F-tests for --.05 k=4 n 10 n 10
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