EXTENSIONS OF HARDY-LITTLEWOOD INEQUALITIES

ZENGJIAN LOU

Mathematics Department Qufu Normal University Qufu Shandong 273165 P. R. China

(Received December 30, 1992 and in revised form May 13, 1993)

ABSTRACT. For a function $f \in H^{p}(B_{n})$, with f(0) = 0, we prove

(1) If
$$0 , then
$$\int_{0}^{1} r^{-1} \left(\log \frac{1}{r} \right)^{s^{\beta-1}} M_{p}^{s}(r, R^{\beta}f) dr \leq ||f||_{p}^{s-p} ||f||_{p,s,\beta}$$
(2) If $s \leq p < \infty$, then$$

$$n \neq p < \infty$$
 ; then

$$\|f\|_{p,s,\theta} \leq \|f\|_{p}^{s-s} \int_{0}^{1} r^{-1} \left(\log \frac{1}{r}\right)^{s^{\beta-1}} M_{p}^{s}(r, R^{\beta}f) dr$$

where $R^{\beta}f$ is the fractional derivative of f. These results generalize the known cases $s = 2, \beta = 1([1])$.

KEY WORDS AND PHRASES. $H^{*}(B_{\pi})$ space, fractional derivative. 1991 AMS SUBJECT CLASSIFICATION CODES. 32A10.

1. INTRODUCTION.

Let C^n denote the n-dimensional vector space over C. Let B_n denote the unit ball in C^n with boundary ∂B_n and let σ denote the rotation-invariant positive measure on ∂B_n for which $\sigma(\partial B_n) = 1$.

We assume that f is holomorphic in B_n . Let $R^{\beta}f(z) = \sum_{s \ge 0} |\alpha|^{\beta} a_s z^s$ be the fractional derivative of $f(z) = \sum_{s \ge 0} a_s z^s (\beta > 0)$.

For $0 < p, s, \beta < \infty$, we set

$$M^{*}_{\mu}(r,f) = \int_{\mathcal{B}_{n}} |f(r\zeta)|^{\mu} d\sigma(\zeta)$$

and

$$\|f\|_{p,s,\beta}^{\rho} = \int_{0}^{1} \int_{\mathcal{B}_{\bullet}} |f(r\zeta)|^{\rho-s} |R^{\beta}f(r\zeta)|^{s} \left(\log\frac{1}{r}\right)^{s\beta-1} r^{-1} d\sigma(\zeta) dr$$

As usual, for $0 , <math>H^{p}(B_{n})$ denotes the space of holomorphic functions on B_{n} for which the means $M_{p}(r, f)$ are bounded and the norm of $f \in H^{p}(B_{h})$ is defined by $|| f ||_{\rho} = \sup_{0 < r < 1} M_{\rho}(r, f).$

Throughout this note, we assume that $f \in H^{p}(B_{n})$, with f(0) = 0.

In [1], Hardy-Littlewood proved the following well-known theorem about $H^{\prime}(B_1)$. THEOREM HL. If $0 , <math>f \in H^{\prime}(B_1)$, then

$$\int_{0}^{1} (1-r) M_{\rho}^{2}(r,f') dr < \infty \qquad (*)$$

If $2 \leq p < \infty$, then (*) implies $f \in H^{p}(B_{1})$.

In this note, we generalize these results to the unit ball B_n , with a new and short proof. That is, we prove the following

THEOREM. (1) If 0 , then

$$\int_{0}^{1} r^{-1} \left(\log \frac{1}{r} \right)^{i\beta-1} M_{\rho}(r, R^{\beta}f) dr \leq \| f \|_{\rho}^{i-\rho} \| f \|_{\rho,i,\beta}^{i,j,\beta}$$

$$(2) \text{ If } s \leq \rho < \infty, \text{ then}$$

$$\| f \|_{\rho,i,\beta}^{i,j,j} \leq \| f \|_{\rho}^{i-1} \int_{0}^{1} r^{-1} \left(\log \frac{1}{r} \right)^{i\beta-1} M_{\rho}^{i}(r, R^{\beta}f) dr$$

Set $s = 2, \beta = 1$ in the Theorem; by the following

LEMMA. For 0 , then

$$\| f \|_{p}^{s} = p^{2} \| f \|_{p,2,1}^{s}$$

we have the following corollary, which extends Theorem HL (note that for $\zeta \in B_*$, $R^1 f(\lambda \zeta) = \lambda f'_{\zeta}(\lambda)$, where $f_{\zeta}(\lambda) = f(\lambda \zeta)$, $\lambda \in B_1$, and rlog $\frac{1}{r} \sim 1 - r$)

COROLLARY. (1) If 0 , then

$$\int_{0}^{1} r^{-1} \left(\log \frac{1}{r} \right) M_{\rho}^{2}(r, R^{1}f) dr \leq \frac{1}{p^{2}} \| f \|_{\rho}^{2}$$

$$(2) \text{ If } 2 \leq p < \infty, \text{ then}$$

$$\| f \|_{\rho}^{2} \leq p^{2} \int_{0}^{1} r^{-1} \left(\log \frac{1}{r} \right) M_{\rho}^{2}(r, R^{1}f) dr$$

2. PROOF OF THE MAIN RESULTS.

PROOF of the Theorem. Let $0 . Assume without loss of generality that <math>||f||_{p} \neq 0$. Set $\mu(\zeta) = \frac{|f(r\zeta)|^{p}}{||f||_{p}^{q}}$, then $\int_{\mathcal{B}_{q}} \mu(\zeta) d\sigma(\zeta) \le 1$; we have , by Jensen's inequality, for each r, $(\int_{\mathcal{B}_{q}} |f(r\zeta)|^{p-s} |R^{\theta}f(r\zeta)|^{s} d\sigma(\zeta))^{p/s}$ $= (||f||_{p}^{s})_{\mathcal{B}_{q}} |\frac{R^{\theta}f(r\zeta)}{f(r\zeta)}|^{s} \mu(\zeta) d\sigma(\zeta))^{p/s}$ $\ge ||f||_{p}^{s'/s} \int_{\mathcal{B}_{q}} |\frac{R^{\theta}f(r\zeta)}{f(r\zeta)}|^{s} \mu(\zeta) d\sigma(\zeta)$ $= ||f||_{p}^{s'/s-p} \int_{\mathcal{B}_{q}} |R^{\theta}f(r\zeta)|^{s} d\sigma(\zeta)$

$$= \| f \|_{p}^{p^{2}/s-p} M_{p}^{p}(r, R^{\beta}f)$$

So

$$\int_{\mathcal{B}} |f(r\zeta)|^{\rho-s} |R^{\beta}f(r\zeta)|^{s} d\sigma(\zeta) \ge ||f||_{\rho}^{\rho-s} M_{\rho}^{s}(r, R^{\beta}f)$$

Therefore

$$\| f \|_{\rho}^{i-\rho} \| f \|_{\rho}^{j-\rho} \| f \|_{\rho}^{j-\rho} \int_{0}^{1} \int_{aB_{*}}^{1} |f(r\zeta)|^{\rho-i} |R^{\beta}f(r\zeta)|^{i} \left(\log \frac{1}{r}\right)^{i\beta-1} r^{-1} d\sigma(\zeta) dr$$
$$\geq \int_{0}^{1} r^{-1} \left(\log \frac{1}{r}\right)^{i\beta-1} M_{\rho}^{i}(r, R^{\beta}f) dr$$

The case $p \ge s$ is treated in a similar way to obtain, for each r,

$$\int_{\mathcal{B}_{\bullet}} |f(r\zeta)|^{p-s} |R^{\theta}f(r\zeta)|^{s} d\sigma(\zeta) \leq ||f||_{p}^{s-s} M_{\rho}^{s}(r, R^{\theta}f)$$

So

$$\| f \|_{p,s,\beta}^{*} = \int_{0}^{1} \int_{\partial B_{s}} |f(r\zeta)|^{p-s} |R^{\beta}f(r\zeta)|^{s} \left(\log \frac{1}{r}\right)^{s\beta-1} r^{-1} d\sigma(\zeta) dr$$
$$\leq \| f \|_{p}^{*-s} \int_{0}^{1} r^{-1} \left(\log \frac{1}{r}\right)^{s\beta-1} M_{p}^{*}(r, R^{\beta}f) dr$$

This completes the proof of the Theorem.

Now, we use the technique of [2] to give the proof of the lemma.

For
$$\zeta \in B_n$$
, $R^1 f(\lambda \zeta) = \lambda f'_{\zeta}(\lambda)$, where $f_{\zeta}(\lambda) = f(\lambda \zeta)$, $\lambda \in B_1$.

By the Hardy-Stein identity for one complex variable ([3]) we have

$$M_{\rho}^{\rho}(r,f_{\zeta}) = \frac{p^{2}}{2\pi} \int_{0}^{r} \int_{0}^{2\pi} |f_{\zeta}(\rho e^{i\theta})|^{\rho-2} |f_{\zeta}(\rho e^{i\theta})|^{2} \left(\log\frac{r}{\rho}\right) \rho d\theta d\rho$$
$$= \frac{p^{2}}{2\pi} \int_{0}^{r} \int_{0}^{2\pi} |f(\rho \zeta e^{i\theta})|^{\rho-2} |R^{1}f(\rho \zeta e^{i\theta})|^{2} \left(\log\frac{r}{\rho}\right) \rho^{-1} d\theta d\rho$$

Integrating with respect to $d\sigma(\zeta)$, using the Fubini theorem and the formula

$$\int_{\mathcal{B}_{a}} g(\zeta) d\sigma(\zeta) = \frac{1}{2\pi} \int_{\mathcal{B}_{a}} d\sigma(\zeta) \int_{0}^{2\pi} g(e^{i\theta}\zeta) d\theta, \qquad g \in L^{1}(\sigma)$$

(see [4, P. 15]), we have

$$M_{\mathfrak{p}}^{\mathfrak{p}}(r,f) \doteq p^{2} \int_{0}^{r} \int_{\mathfrak{B}_{\mathfrak{a}}} |f(\rho\zeta)|^{\mathfrak{p}-2} |R^{1}f(\rho\zeta)|^{2} \Big(\log \frac{r}{\rho}\Big) \rho^{-1} d\sigma(\zeta) d\rho$$

Letting $r \rightarrow 1$, we obtain the Lemma.

ACKNOWLEDGEMENT. The author would like to thank the referee for a meticulous reading of the manuscript, in particular for detecting an error in the first version of the Theorem and for several helpful suggestions concerning presentation of the paper.

REFERENCES

- G. H. Hardy and J. E. Littlewood, Notes on the theory of series (XX), Generalizations of a theorem of Paley, Quart. J. Math., Oxford Ser., 8(1937), 161-171.
- [2] Z. J. Lou, Generalizations of Littlewood and Paley inequalities, <u>Internat. J. Math. & Math.</u> Sci., 16(1)(1993),205-207.
- [3] P. Stein, On a theorem of Riesz, J. London Math. Soc. ,8(1933), 242-247
- [4] W. Rudin, Function theory in the unit ball of Cⁿ, Springer-Verlag, New York, 1980.