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ABSTRACT. Let M,, be the classes of regular functions f(z) = z~! + ag + @12 + - - - defined in
the annulus 0 < |z| < 1 and satisfying Refarrt3 > 0, (n € No), where I°f(z) = f(2), If(2) =
(z7! - 2(z — 1)72) » f(2), I" f(z) = I(I"~' f(2)), and = is the Hadamard convolution. We denote
by T'n = Mn UT, where I' denotes the class of functions of the form f(z) = 27! + Y52 | |ak|2*.
We obtained that relates the modulus of the coefficients to starlikeness for the classes M,, and
Iy, and coefficent inequalities for the classes I',,.
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1. INTRODUCTION

Let 3~ denote the class of function of the form f(z) = z~!+ag+a; +... that are regular in

0 < |z| < 1 with a simple pole at 2 = 0. In [1] Dernek defined the classes M,, of functions f € }_
and satisfying the condition

")

Re — 1%/

I"f(z)

where I°f(z2) = f(2), If(z) = (27! = 2(2 = 1)7%) » f(2) = ~2f'(2) and I"f(2) = I(I*" f(2)) =

271+ (-1)" Y52, k™akz®. My and M, are known classes of univalent functions that are mero-

morfically starlike and convex respectively. He proved that M,,+1 C M,, for each n € Np. Since

M, =Y", tle element of M, are univalent and starlike. Further I',, = M,, N T, where I denotes

the subclass of ) consisting of functions of the form

>0 (lz] < 1, n € Np) (11)

flz)=2"1- Zlaﬂz".
k=1

In section 2 coefficient inequalities are obtained for the classes M,, and I'y,, similar problems
were treated in [2] and [4].

2. COEFFICIENT INEQUALITIES

We begin with a theorem that relates the modulus of the coefficents to starlikeness. Our
results are generalizations of the results obtained by Pommerenke in [3].
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THEOREM 1. Let f(2) = 271+ Y52, akz®. If 352, k"t|ax| < 1, then f € My, (n € No).
PROOF. We define w(z) in 0 < |z| < 1 by

I"f(z) _ 1-w(z)
I"f(z) 1+ w(z)
It sufficies to show that |w(z)| < 1. We have from (2.1)

2.1)

I"f(z) - "1 f(2)
Inf(z) + I+ £(2)
_ | ER (k + 1)k a2t

- | 2- ()P (k- DkragzF+l

TRk DR al
223y (k- Dkax]

The last expression is bounded by 1 if

lw(z)] =

(- <] oo
Sk + D)k arl < 2= (k= 1)kl
k=1 k=1

which reduces to -
> kel < L (2.2)
k=1

But (2.2) is true by hypotesis. Hence |w(z)| < 1 and the theorem is proved.

Special cases of Theorem 1 have been proved by Pommerenke (3, p. 274):

COROLLARY 1: If we substitute n = 0 in the above theorem, then we have f € }_ and
Y rey klak| < 1, therefore f is starlike univalent in 0 < |2| < 1.

COROLLARY 2: If we substitute n = 1 in the above theorem, then we have f € }_ and
Y221 k?|ak| < 1, therefore f is convex univalent in 0 < |2] < 1.

THEOREM 2: A function f(z) = 1 — Y32, |ak|2* is in T if and only if

o0
Y ke <1,  (neNo).
k=1

PROOF: In view of Theorem 1, it sufficies to show that the only if part. Assume that f € I'y..
Let z be complex numbers. If Re(z) > 0 then Re(1/2) > 0. Thus from (1.1) we obtain

;e \ | IAG)
0< ’“{I"“f(z)} &)

_| 1= D" kel
T = (C)M R R a2k
< 1+t Klaxl

T 1= kel

Hence Y 5, k"*!jax| < 1 and the proof is complete.

This result is thus generalization of the result obtained by Pommerenke [3, p. 275].

COROLLARY 3: If f € I'y, then |ax| < g, (n € Ng), with equality for

ful2) = % ~ zor# (n € No).
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