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ABSTRACT. Let fn(X) be the nth iterate of a function in some interval [0, c]. It is known that if

f(x) x- xc, a > 1, then fn(X) Ana for some A and a. In this paper we prove a converse of

this theorem: The rate of convergence of the iterates determines the form of a function.

KEY WORDS AND PHRASES: Iterations of a function, slow convergence.

1991 MATHEMATICS SUBJECT CLASSIFICATION: 26A18, 39B10.

Let f(x) be a real valued function; denote the nth iterate of f(x) by fn(X), i.e., fo(X) x,

fn+ (x) f(fn(x))" If on some interval [0,c] the function f is continuous and satisfies the

inequality 0 < f(x) < x (z 0), then nli_,mfn(X) 0 for every x e [0, c]. Indeed, for every such x,

fn(X) is monotonically decreasing and it is easy to see that the limit must be 0. The rates of

convergence of the sequence fn(X) have been studied extensively, see Ostrowski [1] or Seneta [3].
If f(0) < 1, the sequence converges at least geometrically fast: There is a constant 0 < 7 <
such that fn(X) < .),n for large n. The situation is more delicate when f’(O) 1. This is known as

"slow convergence problem". A. M. Ostrowski [1] has proved the following result:

THEOREM 1. Suppose f(x) is a continuous increasing function on some interval [0, c] such

that 0 < f(x) < x for 0 <x_<c. Iff(x) x- gxP + o(xP) as x O, where g>0,p>l,
then for all x E [0, c]

lim nafn(X A

wherea-ap+l=0anda-KAp-1 =0.

These sufficient conditions for fn(X) to behave like An -a are also, in some sense, necessary,

as the next theorem shows. We recall that a function f(x) is said to be concave if

f(ux + (1 u)y) > uf(x) + (1 u)f(y)

for any z,y in the domain and 0 _< u _< 1. If the function f(x) is concave, then "the slopes
decrease": For x < x2 < x3 we have
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(’"’2) f(’rl) > f(’r3) f(’r’2)
.r2 .r ,r3 ,r2

For the proof see, for instance, Rudin [2].

THEOREM 2. Suppose f(x)is an increasing, continuous, and concave function on [0, c]
satisfying 0 < f(x) < x (x 0). Suppose also that for some fixed a > 0, 1,i_mnafn(z exists and is

different from 0 for every x E [0, c]. Then for every > 0 there is ct > 0 such that

z-xP-< f(.r) < .r-zv+, for0 < z < c,

where a-ap + 0, i.e., p + 1/a.

We need the following lemma.

LEMMA. Let 0 < V < v and let g(z) sx- L be a linear function with slope 0 < s < such

that g(v) V. Let w be the number such that g(w) w and let w < z < v. Put

N N(v,V,s,z)=
log(z + 1-s

log(s)

Ifk>Nthengk(v) < z, and if k > N then gk(v) > z.

PROOF. Put v V v- g(V) and k + gk(v) gic + l(V), k 1,2,.... Then

tk + s [gk-1(v) gk(V)]
and so

-ss =v-Vt+t2+...t =t(l+s+s2+... +s-)= t 1-s

But then

gk(v)=v-(tl+t2+... +tic) =v-Vl-V(1-slc) v-Vsic +v v-V
-s 1-s 1-3"

This is a decreasing sequence in k, hence gic(v) < z is equivalent to k > N, and gic(v) > z is

equivalent to k < N.
PROOF of Theorem 2. It is enough to show that, under the hypothesis of the theorem,

lim
log(x- f(x))

-.0+ og() r’ + 1/" (1)

We break the proof into two parts: I. lim inf _> p, and II. lim sup < p.

Proof of I. Let lim inf and assume that < p. We notice, by the way, that _> 1 because

Ilog(x f(x)] > log(x) for 0 < x < 1, and p > 1. Thus there exists a sequence c > x > x2 _>...
0 such that
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log(xt f(xt))
log(xk) t--. < p. ()

Since the function f(x) is concave and f(0)= 0, the ratio f(z)/x is a decreasing function of x.

From (2) it follows that f(xt)= xt a"
t

and thus

.f(xt) tt,-
st=--- 1-x

t

increases as k c, hence Ilog stl decreases as k--o. We may thus require that the sequence

{xt} satisfies

log xt log xtlogxt+ > 2 and > k (3)
logst+l logsk g sk

Let k be fixed. The slope of the line joining (0,f(0)) and (zt: f(zt) is equal to s 1-z-1. If

x > zt, then the slope of the line joining (zt, f(zt) and (z,f(z))is less than s (the function

f(z) is concave), hence f(z) < stz for z > zt. Define function g(x) by

g(x)=stx if xt<x<Xt_l,k=2,3,

We have just proved that f(x)< g(z), so fro(x)< gin(x) for all integers m (f is monotone, i.e.,

12(z) <_ f(g(x)) /m(x) f(fm- (x)) -</(grn- (x)) -< gm(x))" Let nk be the smallest

integer such that gn,(Zk_l)<Zt. We apply the Lemma with v=zk_ l, V= f(zk)
t,_ V/v. A simple calculation leads toXk- X
k_ xk’ s=

log xt -log xt_ + 1. (4)nt < log st

We remark that if y < xk_ then gnt,(y < xk. Indeed, if y < xk, the result is immediate since

g(x) < x; if xk _< y < xt_ 1, then gn(Y) < xt for some n < nk, so gnu:-n(gn(y)) < xk" Thus

fn2(zl) < gn2(X) _< x2

fn + n3(l) - 9n3(fn(zl)) -- x3 (5)

fn+n3+... +n(Zl) --< gnt(fn+’’" +nt-,(Xl) _( zk.

Setting Nk n2 + n3 +... + nt, the last inequality in (5) becomes fN(Xl) <_ xk, which

implies that for any b > 0

Nk fN:(Xl) <_ Nk xk. (6)

By hypothesis of the theorem, if b > a then the left side of (6) goes to as k . To obtain

the desired contradiction we will show that the right hand side of (6) goes to 0 as k---,cx for some

b > a. We now estimate Nt. From (4) we obtain

/: logk t logx, logx,_ < k + ._. go-Nk =E nm =k +E 1ogsmm=2 m=2 m=2
(7)



34 V. DROBOT

However, the requirement (3) gives

log.rk_l < llgxk
logsk_l 2logsk

log "1,.-2<1 log xk_ < [_1__’2 log xk
logsk_2 2 logsk_l \2] logsk

logs2
< 2logs3

< < logsk

Substituting these in (7) we obtain

k (1/2)m--1 log xk log zk log xk log zkNk < k+m=Y]2 logsk
<

logsk +2logsk 3logsk
the last inequality being justified bu (3). It is thus sufficient to show that for some b > a

b

/gg )lim zk O,

or, what comes to the same thing

lim x/b log zk_ 0. (8)
k--.oo log sk

Now, k 1 is monotonically decreasing to t- (see (2)), hence k 1 < t- 1 + e for arbitrary

and k sufficiently large. Thus

1-xk-I <l-xk-l+e

or

Ilog ski log (i z- )l > Ilog (i * +

SO

k log xk xk log xk<log sk log (1 xk +

for arbitrary e and k sufficiently large. To establish (8) it is sufficient now to show that there
exists e > 0 and b > a so that

lim
x log x

-0 + og (: ’-’ + )
0, (9)

where < 1 + 1/a. Since log(1 + u) u as u 0, the expression in (9) is less than

2z’/’ +’ -’- log(z) (10)
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for sufficiently small x. But < +(1/a hence there is > 0 such that +{1/a}- > O, and

so for some b > a the exponent in (10) is strictly positive, i.e., (9) holds (zrlogz -’ 0 for any

r > 0). This proves I.
Proof of II. Again, we argue by contradiction. Assume that there exists a sequence c > Xl

>_ x2 _>... 0 such that

log(- f())
log(zk) k t> p. (11)

Without loss of generality we may assume that

+ ,+. >_

(xk--Zk+l) x
k Zk+l

It follows from (11) that f(xk) xk xt. Let h(x) be the function defined by

(12)

(13)

(14)

f(zt) if z zt
linear if zt + -< z < zt
0 ifz=0

Since the function f(x)is concave, we see that f(x) > h(x) and so, as in the proof of part I,

]m(x)>hm(z) for all integers rn. Define two integers nt and rnt as follows: nt is

the largest integer such that hnt(xt) > xt+ and mt is the largest integer such that

hm(Xt) > 1/2 (xt + zt + 1)" We now obtain estimates on mt using the Lemma. In this case v zt,

V x
k

z 1/2 (Xk + Xk + l), and

Xk tk +
--Xk+ sk

f(x’t) f(xt4-1)
1 mt -:t/ls

Xk-Xk+

Applying the Lemma, we obtain

log 1/2(xt + xt + 1) + x tl -__t-+- xk log xt t t, +1
xk -Xk+l xk --Xk+l

mt > log st
-1

After direct simplification this reduces to

mt>(logst)-llo 1/2 +xt+l -1.

We apply (13) and the fact that st to obtain

Xk xk +
Cl t t +mk >-- Cl sk xk Xk +
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for large k, where c is a constant. Finally, from (14) we obtain

-tk,. >_ c2 z (15)

for sufficiently large k, where c2 is some constant. For k > 2 set Nk =n +n2+.
+ nk- + mk" It follows from the definition of n’s and m’s that

h(x) > 1/2 (xk + xk + l) -1/2xk

hence for b > 0 we have

Nk fNk(Xl) > NI hNk(Xl) > 1/2 NI xk (16)

b
Since nafn(Xl) converges to a limit that is different from 0, it follows that as k --, oo, Nk f, (Xl)

0 if b < a. But Nk > mk, so (16)implies that mbuxk 0 as k oo whenever b < a. Fro(15)
we see that

Xk > c2x(1-tk)+l (17)m
k

Now, 1 + 1/a < k so a(1- tk) + 1 < 0, and thus b(1- tk) + < 0 for some b < a and k

sufficiently large. We see from (17) that for such b, mkxk oo. This contradiction completes the

proof.
A word or two regarding the concavity assumption in the Theorem 2. The assumption is

certainly needed in the proof. The result is also not true without it. The idea is this: Construct
an arbitrary sequence 0 < Xn < 1, Xn 0 at an arbitrary rate. It is easy to see that one can

construct a function f(z) such" that f(1)= z and f(zn)= Xn+ (Just draw a picture). The

values of f(x) at other point can be taken completely arbitrarily so that the conclusion of

Theorem 2 need not hold.
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