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1. INTRODUCTION
Let {X,., n > 1} be a sequence of independent random elements taking values in a separable
Banach space (B, ]| ||). Put S, = ZX.. A sequence {X,, n > 1} of random elements is said to

=1
satisfy the law of large numbers of Hsu-Robbins type if for any given € > 0

=]
Y PllISall 2 en] < oo. (1.1)
n=1

Hsu and Robbins [1] proved that the existence of the second moment of independent,
identically distributed random variables for which EX; = 0, implies the Hsu-Robbins type law
of large numbers. Erdds (2] showed that the existence of the second moment of independent,
identically distributed random variables and the condition FX; = 0 is also the necessary one for
the Hsu-Robbins type law of large numbers. Considerations concerning (1.1) for sequences and
subsequences of independent, identically distributed random variables can be found in Katz [3],
Baum, Katz [4], Asmussen, Kurtz [5] and Gut [6]. The results in those cases are given under the
assumption when there exists a finite moment of order r (1 < r < 2).

Some conditions, which guarantee the convergence of (1.1) for sequences and subsequences
in the case nonidentically distributed random variables can be found in Duncan, Szynal (7], Bar-
toszynski, Puri (8] and Kuczmaszewska, Szynal [9], [10]. For instance, it has been shown in Duncan,
Szynal {7] that if a sequence {X,. n > 1} of independent random variables with EX, = 0 and
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EX2 < oc.n > 1 satisly the conditions

(1) i Z": PlIX,| > ns) < .

n=1 =1

(1) Z TN R[N < ne) = EXT{IX] < ne])? < oo,
n=1 =1
~ n m-1
(12) Z n~! Z (N I[| X < ne)) 202(‘\'.][|.\’,l < n¢]) < o0,
n=1 m=2 1=1
(1) Zn"(z E(X.I[|X,| < ne]))* < o0
n=1 =1
then

Z P[|Sn] = ne] < oo.

n=1

The following example shows that the assumptions (i)-(iv) which are sufficient conditions

for (1.1) in the case of independent random variables are not sufficient if we consider sequences of
independent random elements taking values in Banach space B.
EXAMPLE. Let I' denote the separable Banach space

o
'={re R, |l =Y |za] < oo}
n=1
and e" denote the element having 1 for its n-th coordinate and 0 in the other coordinates.
Let {£:. n > 1} be a sequence of independent random variables defined as follows P[¢, = 1] =
Plt, = —1] = 1/2, n > 1, and define X, = &, n > 1. Thus {X,, n > 1} is a sequence

of independent ! -valued random elements with symmetric distributions, such that EX, = 0,
E|Xa)? = 1, E||X.]|' = 1, n > 1, and {X,, n > 1} satisfies the assumptions (i)-(iv) but
n n

0
|n? Z X =nt ZI = 1, which shows that the condition Z P[||S.]] = ne] < oo does not
1=1 n=1

=1
hold for all € > 0.

The aim of this note is to give sufficient conditions, which guarantee the Hsu-Robbins type
of large numbers for independent random elements taking values in Banach space B.

2. PRELIMINARIES

We need now an extension of Hoffman-Jérgensen inequality ( cf. Hoffmann- Jérgensen [11],
and Gut [6]).

LEMMA 1. Let {X,, n > 1} be a sequence of independent random elements taking
values in a real separable Banach space (B, || ||) with a symmetric distribution. Then for every
7=1,2,...,nand t >0

PlISall > 3] < €, Y PlIX.)| > 1] + D, (P(l1Sall > 1))?, (2.1)

=1

where C, and D, are positive constants depending only on j.
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PROOF. Let T'=nf{n > 1, ||S.)| 2 1}. Then

PS> 30 =3 PlISA 2 3, T =1]
=1

= Z PUISA 2 36 1S1 <ty Sl < & 1S > 1)

n
= Z PISe = S+ 8+ X 23t 1Sl < oy ISl < 6 1S > )

ZP[H“ =Sz 3t =Sl = XL IS <t ISl < IS 2 1]

<ZP1||<"— Wl > 2= X T—z1<ZP[u\'|>t T =i

1=1

+ZP[||¢ - Sil=¢ T—z]<ZP[Il\’Il>tl

=1

+3PlIS, -S> 1] PIT = 4]

1=1

Moreover,
P|Sn = Sl 2 1) < Plmax(||Sa = Sill, 182 = Si + Sil) 2 ¢]

< 2P[|ISall 2 1),

as S, — S, and S, are independent, symmetrically distributed random elements.
Hence

Pn|9||>3t1<ZPn|\’|>t1+>P[n¢u>t1 ZP[T—z]

=1

<2me 2 )+ 2P{ISall 2 8- Plmax [IS;]] > ]

1=1

<Y PUXI 2 8]+ 4(P(ISall 2 ).
=1

By the induction principle, we get
PllISall = 3%4] = PlISa]l > 3-31]

< > PUIX 2 34 + 4(P(IISa ]| 2 31))?

=1

<Y PUXN 2 1+ 4(C, ) PUIX = 8]+ D, - PP[Sa]] 2 8])?

=1 1=1

< Cn Y PUIXI 2 t) + Dy (PISA] > 1)¥*.

=1

Moreover, we shall use the following lemmas.
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LEMMA 2. ( Yurinski [12] ) Let Xy,.... X, be independent B-valued random elements
with F||XN, ]| <oc (r=1..... n). Let Fi be the a-field generated by (Xy...... \p). (A=1,...,n)
and let Fo = {0.92}. Then for 1 <k <

QLS IFD = EASMIF-0l < DX+ EILXG). (2:2)

LEMNMA 3. ( Loeve [13] ) For every ¢ > 0
Pl —med X|| > ] <2 P N?°) > <] (2.3)
Plsup [|X, = med X, || 2 €] <2 Plsup || X;]| > <] (2.4)
1<n J<n

where X® is a svmmetrized version of X.

In what follows we shall use the strong law of large numbers for a sequence of independent,
identically distributed random elements {X,,. n > 1} in a separable Banach space given in Tavlor
[14].

THEOREM. Let {X,. n > 1} be a sequence of independent identically distributed B-valued
random elements such that E||X;]| < oo.

Then [jn~! Z X, - EXj|| > 0as. asn — oo.

=1

3. RESULTS

THEOREM L. Let {X,, n > 1} be a sequence of independent, symmetrically distributed,
B-valued random elements. Suppose that {ny, k& > 1} is a strictly increasing sequence of positive

integers. If for some positive integer j and any given ¢ > 0

() D> PUIX 2 mke/3] < oo,
k=1 1=1
[e<) "y
th) Y it Y BN < nie))? < oo,
k=1 1=1
o0 ng m-—1
(1i2) S 7t S ENXalPIIXnl < nie] 3 EIXIPIIX] < msel)? < oo,
k=1 m=2 =1
then -
> PlISull 2 nie] < 00
k=1
iff
[|Sa./nkll — 0 in probability as k& — oo. (3.1)

PROOF. It is enough to show that under the conditions (i)-(iv) ||Sn, /nk]| — 0 in proba-

bility as k — oo implies that »  P[||S,, || > ne] < oo.
k=1

Put X = X, I[|X,]| < nxe]. S, = >~ X! and Y., = E(IS,, 15) = E(|lS4_¢ || F.iz1) where
=1
F.=o(X{,X},....X]) and Fo = {0. Q}. Then we have
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ny
PUISwl 2 me] < €Y7 PIINY 2 mie /3] + D, (PlISw Il 2 nie /3D

Moreover,

S (PlliSn | 2 mie/F)?
k=1

IA
lv

o~ ng o
Z 3o PUX 2 mie/3) + Y (PIISLI 2 /3]
k=1 =1 k=1

Note that |55, || = E||S,, || = Z ¥, .. and

(> 9

S (PUISH N = ENS, Il > nie/3))? Z(PKZ Yo,a)? 2 ni(/3))”
k=1 =1 =1
ng m-1
= Z{P[Z VAt 2Y Yam D Yaus 2 ni(e/3)])
1=1 m=2 =1
m-1
< ZU’IZ 22 nk(e/3)2 /2 + PIZ Yoem O Yo 2 nl(e/37)2/4])7.
=1 m=2 1=1
Now putting Z,,, = Y2 — EY2 | and using the inequality (2.2) we get for &’ = (£/37)2/2

Z(P[IZZM.IM e < ()P E( ;‘E|Zznk.| )Y

1=1 1=1

ng

NN Y EZE )Y < () Z( ZE
1 k=1

0
k=1 1=

oo ng
<2 Y (0t Y EIXYY <o
k=1

1=1

Moreover, we see that (ii) and (iii) imply

ng ZE 2. < 8n’2ZEI|X II? = o(1)

1=1 1=1
as
ng ng ng m-1
(ng* D BIXIP)? = ng* S BIXI® + ng*2) " EIXLIP Y ENX)P
1=1 =1 m=2 i=1
implies

Nk
(me? Y EIX]?)? - 0ask — co.

1-1
Now we see that {Y,.h.ZY;,N, 2 <t < n} and {Ya,,., 1 € i < n} are martingale
)=
differences for fixed n. Therefore
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ng m-—1

Z(P[Z Yiem Z Va2 nie'/2)?

m=2

m-1

522’*’(5’)"’*'i{n ZEOMZ}W ?y
k=1

1=1

o~ ny m-1
<22 (e Z{n;“ 3 EMIXLI + ENXRID*Y Yau) 'Y

m=2 1=1

m-1
<2(e )"’*'2{1 S BUXG + EIXGI S QX+ BIXIPY

=1 m=2 =1

m-1

< 4, E{nk ZEnx I’ ZEMX'M }2 < oo,

where A, is a positive constant dependmg only on j and €.
Thus we have proved that

Y (PIS, N = ENSi, Il 2 nie/3])? < oo, (3.2)
k=1

which implies that
PllIS,, Il = ENS, | > nie] — 0as k— oo (3.3)

Moreover, we state that (3.1) and (i) imply

PlIS, I 2 nie] = PlIS,, Il = nee, Sue = S, 14 PlIS,, ]I 2 nee, Say # Sp,

< P(|1S, k||>"k€]+ZP[||X|>nk€] — Oask — oo
=1
or

PllIS, Il > nke] — Oas k — oo. (3.4)
Hence by (3.3) and (3.4) we get

E||S:,k[|/n;, — 0ask — oo,

which together with (3.2) gives

D (PlIS, I 2 nie/3])? < 0.
k=
Taking into account that

Z(Pmsm Il > nee/3)?

< 23 P[nx,n>nke/3fn”+2<Pn| > e /3)% )

k=1 =1
and using (i) we complete the proof of Theorem 1.
COROLLARY 1. Let {X,, n > 1} be a sequence of independent, symmetrically distributed,
B-valued random elements. Suppose that {n, k > 1} is a strictly increasing sequence of positive
integers. If for some positive integer j and any given ¢ > 0
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N oy

(1) SN PUN 2 ke /3] < o0,

A=1 1=1

N ny
(20) S et Y EIXIPIIX < nie])? < oo,
k=1 1=1
then -
> PliISa Il = nug] < oo
k=1
iff

||Sae/nk]l — 0 in probability as & — oo.

Now we consider the Hsu and Robbins law of large numbers for subsequences of independent,
nonsymmetrically distributed random elements taking values in a real separable Banach space.

THEOREM 2. Let {X,, n > 1} be a sequence of independent, B-valued random elements.
Suppose that {n;, k > 1} is a strictly increasing sequence of positive integers. If for some positive

integer j and any given ¢ > 0

[>¢] ny
() oD PlIX 2 mue/ (2 3)] < oo,
k=1 1=1
oo Nk
(n Y it BN XX < 2me])? < oo,
k=1 =1
) ng m-1
(I11) Y ENXnlPI1 Xl < 20ke] Y- ENXPIIIX]| < 2n4e])? < oo,
k=1 m=2 =1
then
> PllISnll = nee] < 00
k=1
iff

||Sn./nk]l — 0 in probability as k — oo.

PROOF. Assume that {X,, n > 1} is a sequence of symmetrically distributed random
elements. Then by Theorem 1 we conclude that conditions (I) - (III) are sufficient for the Hsu and

Robbins law of large numbers, i.e.

> Pll|Snll > nxe] < 00

k=1
To remove the symmetry assumption we argue as follows. Let {X2, n > 1} be a sequence
of the symmetrized version of X, i.e. X} = Xy — X}, k > 1, where X; and X} are independent and
have the same distribution. Then by (I) we get for &’ = /3’

o ng o0

n
SN PUXIN ] = D0 PIX, — XTI 2 e

k=1 1=1 k=1 =1
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~oong

<23 STPUNN 2 w2 < oo

h=1 =1

and by (I) and (I1) we have

S0t S EATINY = S 3 L
k=1 =1 A=t 1=1
~ ny
= Y 0 Y BN = XIIIX - XY < ks X)) < ]
k=1 =1
+ ST EIN = XTITOX = XTI < e, X)) > me))?
=1
e ng [ (Y
< N Y EINTING < 2 4 227NN TS (PN 2 nae])? < oo
k=1 =1 k=1 1=1
Now we see (I1) and (III) imply
ny
ni? ST EIXPIIX < 2n0e] — Oask — oo (3.5)

=1
since

3
nﬁZEnVlPI[nxn <2n4e))? = ngt YT EIXPIIX] < 2nie]

ng m-1
+ 205 Y BN X PN < 2n4e] Z E|XJPIIX < 2nke],
m=2

Therefore by (I), (III) and (3.5) we obtain

ny

Z N EIX| Z E|IXI%?

k=1 m=2

o m-1
< O30t S Bl I Xl < 2ke] - S ENXIPI(L < 2mic)?
k=

m=2 =1
o] ng m-—1
+ 2 (12 Y ENXnlPIIXnll < 2nke] - Y PlIX. 2 nae))?
k=1 m=2 1=1

+3 n? Z PUXoll = mel- 3 BIXJPIIX] < 2ne])?

k=1 =1

+ZZP[||X;|| > mee]} < oo,

k=1 1=1
where C is a positive constant depending only on j and €.
Hence by Theorem 1 we obtain

oo
3 PlISEI > nee] < oo,
k=1

Taking into account the symmetrization inequality (2.3)

Pll|Suy /i = med(Sny [mi)ll 2 €] < 2P(S3,]| 2 nie]
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we have

X
3 Pl /1 = med(Sn, )] 2 <] < oo,
A=1
But the assumption P[||S,, || > nie] — Oas b — oo

[fmed(Sn, /ne)l — Oas k — oo,

which together with
o
Z P[||Sn, /0 — med( Sy, /i) > €] < 00
h=1
gives )
Y Pll1Sa, ]l 2 e < oo
k=1
COROLLARY 2. Let {X,, n > 1} be a sequence of independent, B-valued random cle-
ments. Suppose that {n;, k > 1} is a strictly increasing sequence of positive integers. If for some

positive integer j and any given ¢ > 0

o0 ng
() Y ST PUIX 2 ne/(2-3)] < oo,
k=1 =1
00 n
(Ir) YD ENXPIX < 2nie])” < oo,
k=1 1=1
then
> PllSall 2 nre) < 0
k=1
iff

||Sa./nkll — O in probability as & — oo.

COROLLARY 3. Let {X,, n > 1} be a sequence of independent, B-valued random ele-
ments. Suppose that {ng, k > 1} is a strictly increasing sequence of positive integers. If for some

positive integer j and any given € > 0

o ng

() DD PUX 2 e/ (2 3)] < oo,
k=1 =1
(o) ng
(ar) > (it EIXPINIX < 2ree])? < oo,
k=1 =1
oo ng “
(I117) DY EIXPIIX) < 2nke))? < 00,
k=1 =1

then



10 A. KUCZMASZEWSKA AND D. SZYNAL

D Pl 2 me) < oo
k=1
iff

150, /7]l — 0 in probability as b — oo.

Some results concerning the independent identically distributed random elements can be
obtained as corollaries of Theorem 2.

COROLLARY 4. Let {X,. n > 1} be a sequence of independent, identically distributed
B-valued random elements. Suppose that {ny, & > 1} is a strictly increasing sequence of positive

integers. If for some positive integer j and any given ¢ > 0

(I%) Z ne Pl Xy ]| > nie/(2 - 3)] < o0,
k=1
(11%) Z(n;aE||.‘(|||"l[|lX1|| < 2me])? < oo,
k=1
(I11%) Y EX PG| < 20ke])P < o0,
k=1
then
> PllISall 2 nue] < 00
k=1
iff

|Sn,/nkll — 0 in probability as & — oo.

COROLLARY 5. (Theorem of Hsu and Robbins for random elements taking values in
Banach space) If {X,,, n > 1} is a sequence of independent, identically distributed B-valued random
elements with EX; =0 and E||.X,]|> < oo, then

3 Pll1Sn,ll = nre] < co.
k=1

PROOF. It is easy to see the that conditions (I*) - (III*) from Corollary 4 are satisfied by
the assumptions EX; = 0 and E||X||> < oo. Moreover, by the strong law of large numbers for a
sequence {X,, n > 1} of independent, identically distributed random elements we conclude that

||Se/n|| — 0 in probability asn — oo.

COROLLARY 6. Let {X,, n > 1} be a sequence of independent, identically distributed
B-valued random elements with EX; = 0 and let {nx, k > 1} be a strictly increasing sequence of

positive integers. Suppose that for some r, 1 <r <2,

2TTM(y(r)) - coasT — oo, (3.6)
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5]
where (r) = card{k: ny <}, + >0, $(0)=0, M(x)= Z ng, r > 0.

k=1
If .
Y P[]l > me] < o0 (3.7)
A=1
then -
D PlISul 2 nie] < oo.
k=1
PROOF. The assumption (3.7) implies that EM(¢(||.X (3.6) gives
E||X,|' < oo for some r, 1 <r <2

Now it is easy to show that there exists some positive integer j, for which

ZnﬁEux,n* < Y ORPEIX (2nke)* )
k=1 k=1
< O3l TEIXINY
k=1
and -
S g BIXPIIXG < 20l < 3 (0 B (2=
k=1 k=1

[e )
< ok nil—ﬂ?’“(E"X‘ ”r)ﬂ“ <
k=1
Similary, as in the proof of Corollary 5, by the strong law of large numbers for a sequence
{Xn,, n > 1} of independent, identically distributed random elements we conclude that

||Sa,/nk]l — 0 in probability as k& — oo.

REMARK. Note that the WLLN is implied by the additional conditions: EX, =0 and B
is of the type 2 since
PllISncll 2 nie] < P(l|Sn, — ESn, || 2 ne]

nk
< PlIS;, = ESy Nl 2 el + Y PIIX.I 2 nre/(2-3)

=1

< en 2ZE||X’||2+ZP[]|X | > nie/(2-3)) = o(1).

=1

Now we are going to present some results on complete convergence for randomly indexed
partial sums of independent, non-identically distributed random elements.

THEOREM 3. Let {X,, n > 1} be a sequence of independent, B-valued random elements
and {T,, n > 1} be positive integer valued random variables. Let {a,, n > 1} be strictly increasing
positive integers and {3,, n > 1} be positive constants such that a, — o0 asn — oo,
lim sup,—ocoffn = f <1 and

(o]
Y P(Tu/an— N| > Ba] < o0, (3.8)
n=1
where N is a positive random variables such that for some A, B, where 8 < A < B < oo,
P[A<N<B]=1.
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If for some positive integer j and for any given ¢ > 0

~ [ (B+)]

(a) SO PUNG 2 welA - /23] < o,
k=1 =1
~ [ax (B+534)]
(b) Dt Y EIXIIIIX < 2ae(A - B)))? < oo,
k=1 =1
~ [dA(B+13k” m-1
(€ (et D EIXalPHIXnll < 2ae(A-B) Y EIXIPI[IX.| < 2are(A=B)])¥ < oo,
k=1 m=2 1=1
then
3" PliSzl > Tre] < oo (3.9)
k=1
if

[StexB+80)/lax(B + Bx))ll — 0 in probability as k& — oo.
PROOF. Note that .
P Xl > Toe)

1=1

Tn
< Pl Xl > Tue. |Tofaw — N| < Bu] + P(|Tu/an — N| > Ba)

1=1

<P I15,] = ane(A = B)] + P[|Tu/an — N| > Ba] (3.10)

max
an(A=fn)<i<an(B+06n)
Now assuming that X,,, n > 1, are symmetrically distributed random elements we get by the Lévy’s
inequality

5:1l 2 ane(4 - B)]

[ max

an(A—Pn)<3<an(B+Bn)
[an(B+06n)]

S 2Pl Y Xl > ane(A-B)).

=1
But under the assumptions of Theorem 3 one can verify after using Theorem 1 with ny = [ax(B+8x)]

that
[ax(B+6x)]

Pl Y Xl2adA-8) < .
k=1

=1
This bound and the assumption (3.8) together with (3.10) imply (3.9) for symmetrically distributed
random elements.
To remove the symmetry assumption we proceed similar as it has been done in the proof
of Theorem 2. -
> PllISr, /T = med(St,/T,)|| > €] < oo. (3.11)
n=1
Now we note that

Tn
PN Xl > Toe]

=1
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<P HZ\IH\,M«I,. (A= 3elll 2 ane(A = 3)]

an( ‘-".)<;<-,.(H+! )
[1(B+4)]
+ Z I’[“\,” > (IL:‘(A - f)] + P“Tn/(’n - AVl > /in]

But by the Kolmogoiov's inequality

1Y XN < an(A = elll > ane(A = B)]
=1

max
an(A=3n)<i<an(B+i3n)

[1n(B+:30)]

(A=)t Y E

=1

zl[”'\t“ < aps(Ad— /’)]

X,|

Taking into account that

[an(B+3n)]
ai? N EIXIPIIX] < ans(A=B)] — Oasn — oo

1=1

(cf. the proof of Theorem 1), (3.8) and assumption («) we have

Tn
Pl Z X||>T] - 0asn — oo. (3.12)

=1

Therefore, (3.11) and (3.12) imply that
[lmed(St,/T.)|| — 0asn — oo,

and complete the proof of the Theorem 3.

Note that Theorem 3 generalizes the results presented by Adler [15].

The following corollary is an extension of Adler’s result to independent non-identically
distributed B-valued random elements.

COROLLARY 7. Let { X, n > 1} be a sequence of independent, B-valued random elements
and {T,, n > 1} be positive integer valued random variables. Suppose that {a,, n > 1} is a strictly
increasing sequence of positive integers and {8,, n > 1} is a sequence of positive constants such

that a, — ocoasn — o0, lim supy.cfPn = # <1 and
[er]
> P(ITu/an — 1] > 8] < 0.
n=1

If for some positive integer j and for any given ¢ > 0 the assumptions (a)-(c) are satisfied
then

Y PlUIST 2 Tre] < 00

k=1

1Stera 4801/ lax(1 + B)]]l — 0 in probability as & — oo.

The next corollary is an extension of one of the results given in Adler [15] to the case of

i.i.d. B-valued random elements.
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COROLLARY 8. Let {X,. n > 1} be a sequence of independent identically distributed
B-valued random elements with £X, = 0 and {T,, n > 1} be a sequence of positive integer-

valued random variables. Suppose that {a,. n > 1} is a strictly increasing sequence of positive

integers and {3,. n > 1} is a sequence of positive constants such that @, — oo asn — oo,

lim supp—n B8, = 3 <1 and

3" PlIT./an — 1] > B,) < oo.

Suppose that for some r, 1 < r <2, 27"M(y(2)) = ocoasz — oo,
]
where ¢(z) = card{k : ay < x}. v >0, ¢¥(0) =0, M(x) = Zak, > 0.

k=1

Ny

If Z ax P[] X1]| > axs] < oo then

k=1

3 PllISz ) = Tie] < co.
k=1
ACKNOWLEDGEMENT. We are very grateful to the referee for his helpful comments allowing us
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