SOME RESULTS ON *x*-SOLVABLE AND SUPERSOLVABLE GROUPS

T.K. DUTTA and A. BHATTACHARYYA

Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Calcutta - 700 019 India

(Received August 3, 1992 and in revised form January 20, 1993)

ABSTRACT. For a finite group G, $\phi_p(G)$, S_p(G), L(G) and S_p(G) are generalizations of the Frattini subgroup of G. We obtain some results on π -solvable, p-solvable and supersolvable groups with the help of the structures of these subgroups.

KEY WORDS AND PHRASES. p-solvable, Π -solvable, supersolvable. 1991 AMS SUBJECT CLASSIFICATION CODES. Primary 20D10, 20D25; Secondary 20F16, 20D20.

1. INTRODUCTION.

Many authors have considered various generalizations of the Frattini subgroup of a finite group. Deskins [6] considered the subgroup $\phi_p(G)$, Mukherjee and Bhattacharya [4] the subgroup $S_p(G)$ and Bhatia [3] the subgroup L(G). In [7], we introduced the subgroup $S_p(G)$ and investigated its influence on solvable group. In this paper, our aim is to prove some results which imply a finite group G to be T-solvable, p-solvable and supersolvable. All groups are assumed to be finite. We use standard notations as found in Gorenstein [8] and denote a maximal subgroup M of G by M \leq G.

2. PRELIMINARIES.

DEFINITION. Let H and K be two normal subgroups of a group G with KCH. Then the factor group H/K is called a chief factor of G if there is no normal subgroup N of G such that $K \subset N \subset H$, with proper inclusion. Let M be a maximal subgroup of G. Then H is said to be a normal supplement of M in G if MH = G. The normal index of M in G is defined as the order of a chief factor H/K, where H is minimal in the set of all normal supplements of M in G and is denoted by $\gamma(G : M)$.

(2.1) (Deskins [6,(2.1)], Beidleman and Spencer [2, Lemma-1])

If M is a maximal subgroup of a group G then $\gamma(G : M)$ is uniquely determined.

(2.2) (Beidleman and Spencer [2, Lemma-2])

If N is a normal subgroup of a group G and M is a maximal subgroup of G such that $N \subseteq M$ then $\gamma(G/N : M/N) = \gamma(G : M)$

(2.3) (Mukherjee [9, Theorem-1])

If M is a maximal subgroup of a group G and M \triangleleft G then η (G:M)=[G:M]=a prime.

(2.4) (Baer [1, Lemma-3])

If the group G possesses a maximal subgroup with core 1 then the following properties of G are equivalent.

(1) The indices in G of all the maximal subgroups with core 1 are powers of one and the same prime p.

(2) There exists one and only one minimal normal subgroup of G and there exists a common prime divisor of all the indices in G of all the maximal subgroups with core 1.

(3) There exists a non-trivial solvable normal subgroup of G.

DEFINITION. Let G be a group and p be any prime. The four characteristic subgroups of G, which are analogous to the Frattini subgroup $\phi(G)$, are defined as follows :

$$\begin{split} & \operatorname{S}_{p}(G) = \bigwedge \left\{ \mathsf{M} : \mathsf{M} \in \Sigma_{p}(G) \right\} \\ & \operatorname{\mathfrak{g}}_{p}(G) = \bigwedge \left\{ \mathsf{M} : \mathsf{M} \in \gamma_{p}(G) \right\} \\ & \operatorname{L}(G) = \bigcap \left\{ \mathsf{M} : \mathsf{M} \in \Lambda(G) \right\} \\ & \operatorname{S}_{p}(G) = \bigcap \left\{ \mathsf{M} : \mathsf{M} \in \Sigma_{p}(G) \right\} \end{split}$$

where

 $\Sigma_{p}(G) = \{ M : M \leqslant G, [G:M]_{p} = 1 \text{ and } [G:M] \text{ is composite} \}$ $\gamma_{p}(G) = \{ M : M \leqslant G, [G:M]_{p} = 1 \}$ $\Lambda(G) = \{ M : M \leqslant G, [G:M] \text{ is composite} \}$ $\Sigma_{p}(G) = \{ M : M \leqslant^{-} G, \gamma(G:M)_{p} = 1 \text{ and } \gamma(G:M) \text{ is composite} \}$

In case $\Sigma_{\mathcal{F}}(G)$ is empty then we define $G = S_{\mathcal{F}}(G)$ and the same thing is done for the other three subgroups.

(2.5) If H is a subgroup with finite index n in a group G then $\operatorname{core}_G H$ has finite index dividing n!

(2.6) (Dutta and Bhattacharyya [7, Theorem-3.5])

If G is p-solvable then $S_{\mathcal{O}}(G)$ is solvable.

DEFINITION. Let M be a maximal subgroup of a group G. Then M is said to be cmaximal if [G:M] is composite.

3. SOME RESULTS ON p-SOLVABLE AND IT-SOLVABLE GROUPS.

THEOREM 3.1. Let p be the largest prime dividing |G| and $\Sigma_p(G) \neq \emptyset$. Then G is p-solvable if and only if $\eta(G:M)_p = [G:M]_p$ for each M in $\Sigma_p(G)$.

PROOF. Let G satisfy the hypothesis of the theorem. Then G is not simple. For, otherwise $|G|_p = \eta(G:M)_p = [G:M]_p = 1$, where M belongs to $\Sigma_p(G)$, which contradicts the fact that p divides |G|. Let N be a minimal normal subgroup of G. If p does not divide |G/N| then G/N is a p'-group and hence it is p-solvable. If p divides |G/N| then p is the largest prime dividing |G/N|. If $\Sigma_p(G/N) = \emptyset$ then $G/N = S_p(G/N)$. By Theorem-8(i) [10], $S_p(G/N)$ is solvable and hence G/N is p-solvable. We now assume that $\Sigma_p(G/N) \neq \emptyset$. By Lemma-2 [2], we obtain $\eta(G/N:M/N)_p = [G/N : M/N]_p$ for each M/N in $\Sigma_p(G/N)$. So by induction, G/N is p-solvable. We note that $S_p(G) \neq G$, since $\Sigma_p(G) \neq \emptyset$. If $N \in S_p(G)$ then N is solvable and so it is p-solvable and consequently G is p-solvable. If $N \notin S_p(G)$ then there exists M in $\Sigma_p(G)$ such that $N \notin M$ and so G = MN. By hypothesis $|N|_p = \eta(G:M)_p = [G:M]_p = 1$ and so N is p-solvable and hence G is p-solvable.

THEOREM 3.2. Let p be the largest prime dividing |G|. Then G is p-solvable if the following hold.

- (i) G has a p-solvable c-maximal subgroup M with η (G:M)_p = [G:M]_p
- (ii) If M_1 and M_2 are c-maximal subgroups of G with

 $\gamma(G:M_1)_p = \gamma(G:M_2)_p$ then $[G:M_1]_p = [G:M_2]_p$

REMARK 3.3. The converse of the above theorem is not necessarily true. Let G be a p-group, where p is any prime. Then G is p-solvable, but it has no c-maximal subgroup and so G does not satisfy the hypothesis (i) of the above theorem. If the group G has a c-maximal subgroup then the converse of Theorem 3.2 follows from Theorem 1 [2].

THEOREM 3.4. Let G be a p-solvable group and $\Sigma_{\mathcal{D}}(G) \neq \emptyset$. Then G is π -solvable if and only if $\eta(G:M)_{\pi} = [G:M]_{\pi}$ for each M in $\Sigma_{\mathcal{D}}(G)$.

Let the condition of the theorem hold. Let G be simple. Then it PROOF. immediately follows that either G is a p'-group or is of prime order p. If G is of prime order p then it is solvable and hence π -solvable. If G is a p'-group then $|G|_{n} = 1$. Also |G| is composite. For, otherwise, G is cyclic and hence it is η -solvable. Let $|G|_{\pi} \neq 1$ and $p_1, p_2, \ldots p_n$ be the set of prime divisors of |G|, which belong to Π . Let $S(p_i)$ (i = 1,2, ..., n) denote the Sylow p_i -subgroup of G. Then $S(p_i) \neq G$ for i = 1,2,...,n. For, otherwise, G is solvable and hence G is Π -solvable. Let M, be the maximal subgroups of G such that $S(p_i) \subseteq M_i \subseteq G$ and so $[G:M_i]_{p_i} = 1$ (i = 1,2,...,n). By hypothesis $|G|_{\pi} = \gamma(G:M_i)_{\pi} = [G:M_i]_{\pi}$ (i=1,2,...,n). As each $p_i \in \Pi$, it follows that $|G|_{\pi} = 1$, a contradiction. So $|G|_{\pi} = 1$ and hence G is π -solvable. We now suppose that G is not simple. Let N be a minimal normal subgroup of G. Then G/N is a p-solvable group. If $\sum_{O}(G/N) =$ ø then $G/N = S_p(G/N)$ and so by (2.6), it follows that G/N is solvable and hence it is ff-solvable. We now assume that $\Sigma_{\rho}(G/N) \neq \emptyset$. Using Lemma 2 [2], we obtain $\eta(G/N : M/N)_{ff}$ = $[G/N : M/N]_{\Pi}$ for each M/N in $\Sigma_{\mathcal{D}}(G/N)$. By induction, G/N is Π -solvable. Let N_1 be another minimal normal subgroup of G. Then G/N_1 is π -solvable. Since $G = G/N \wedge N_1$ is isomorphic to a subgroup of the π -solvable group G/N x G/N, it follows that G is π solvable. We may now assume that N is the unique minimal normal subgroup of G. We shall now show that N is 7-solvable. We note that $S_{\mathcal{D}}(G) \neq G$, since $\mathcal{I}_{\mathcal{D}}(G) \neq \emptyset$. If $N \subseteq S_{\mathcal{D}}(G)$ then by (2.6) it follows that N is solvable and hence it is ff-solvable. If $N \notin S_{\rho}(G)$ then there exists M_0 in $\Sigma_{\mathcal{P}}(G)$ such that $N \notin M_0$ and so $G = M_0 N$ and core_G(M₀) = (1). Let M be any maximal subgroup of G with core 1. Then $N \notin M$ and so G = MN. Clearly M belongs to $\Sigma_{\rho}(G)$. By hypothesis $|N|_{\Pi} = \eta(G:M)_{\Pi} = [G:M]_{\Pi}$. If $|N|_{\Pi} = 1$ then N is Π -solvable. If $|N|_{\Pi} \neq 1$ then there exists a common prime divisor of all the indices in G of all the maximal subgroups with core 1. So by (2.4), N is solvable and hence it is π -solvable. Thus G/N and N are both π -solvable. So G is π -solvable.

The converse follows directly from Theorem 2 [9].

THEOREM 3.5. Let G be a group with $\lambda(G) \neq \emptyset$. Then G is π -solvable if and only if $\eta(G:M)_{\pi} = [G:M]_{\pi}$ for each M in $\lambda(G)$, where $\lambda(G) = \frac{1}{M} \cdot M \cdot \frac{1}{M} \cdot \frac{1}{M} \cdot \frac{1}{M}$ is composite.

THEOREM 3.6. Let G be a group with $|\lambda(G)| \ge 2$. Then G is π -solvable if and only if $\gamma(G:M_1)_{\pi} = \gamma(G:M_2)_{\pi}$ implies $[G:M_1]_{\pi} = [G:M_2]_{\pi} = \gamma(G:M_1)_{\pi}$ for any M_1, M_2 in $\lambda(G)$.

PROOF. Let the condition of the theorem hold. If $|G|_{\pi} = 1$ then G is a π' -group and hence it is π -solvable. So we assume that $|G|_{\pi} \neq 1$. Let G be simple and p_1, p_2, \ldots, p_n be the set of prime divisors of |G|, which belong to π . Then as in the proof of Theorem 3.4, we can show that there exist maximal subgroups M_i of G such that $[G:M_i]_{p_i} = 1$ (i=1,2,...n).

By hypothesis, $|G|_{\pi} = [G:M_1]_{\pi} = [G:M_2]_{\pi} = \cdots = [G:M_n]_{\pi}$. As each $p_i \in \pi$, it follows that $|G|_{ff} = 1$, a contradiction. So G can not be simple. Let N be a minimal normal subgroup of G. If λ (G/N) is empty then Λ (G/N) is also empty and so by definition, L(G/N) = G/N and consequently by the supersolvability of the group L(G/N), it follows that G/N is Nsolvable. If λ (G/N) consists of only one element M/N, say, then either Λ (G/N) is empty or $\Lambda(G/N) = \{M/N\}$. If $\Lambda(G/N)$ is empty then as above G/N is supersolvable. If $\Lambda(G/N) = \{M/N\}$ $\{M/N\}$ then M/N = L(G/N) and consequently M/N is normal in G/N. So by Theorem 1 [9], $\eta(G/N:M/N) = [G/N:M/N] = a$ prime, a contradiction, since $M/N \in \Lambda(G/N)$. We now assume that $|\lambda(G/N)| \ge 2$. It can be shown that G/N satisfies the hypothesis of the theorem. So by induction, G/N is Π -solvable. As before, we can assume that N is the unique minimal normal subgroup of G. Also we see that $L(G) \neq G$. If $N \in L(G)$ then N is solvable and hence it is π -solvable. If N¢L(G) then there exists M_n in A(G) such that N¢M₀ and so G = M₀N and core $_{G}(M_{O}) = \langle 1 \rangle$. Let M be any maximal subgroup of G with core 1. Then N ¢ M and so G = MN. Consequently $\eta(G:M) = |N| = \eta(G:M_{O})$, whence it follows that M belongs to $\lambda(G)$. By hypothesis $[G:M]_{\pi} = |N|_{\pi}$. If $|N|_{\pi} = 1$ then N is π -solvable. If $|N|_{\pi} \neq 1$ then using (2.4), we have N is solvable and hence it is π -solvable. Thus G/N and N are both π -solvable and consequently G is **T**-solvable.

The converse follows directly from Theorem 5 [9].

THEOREM 3.7. Let G be a p-solvable group and $|\Sigma_{\mathcal{P}}(G)| \ge 2$. Then G is π -solvable if and only if $\eta(G:M_1)_{\pi} = \eta(G:M_2)_{\pi}$ implies

 $[G:M_1]_{\pi} = [G:M_2]_{\pi} = \eta G:M_1 \eta \text{ for any } M_1, M_2 \text{ in } \Sigma_{\mathcal{P}}(G).$

THEOREM 3.8. Let G be a p-solvable group and $|\Sigma_{\mathcal{P}}(G)| \ge 2$. Then G is Π -solvable if and only if the following hold.

(i) G has a π -solvable maximal subgroup M with $\eta(G:M)_{\pi} = [G:M]_{\pi}$.

(ii) $\Upsilon(G:M_1)_{\pi} = \Upsilon(G:M_2)_{\pi}$ implies $[G:M_1]_{\pi} = [G:M_2]_{\pi}$ for any M_1, M_2 in $\Sigma_{p}(G)$.

THEOREM 3.9. Let G be a group with $|\lambda(G)| \ge 2$. Then G is π -solvable if and only if the following hold.

(i) G has a π -solvable maximal subgroup M with $\gamma(G:M)_{\pi} = [G:M]_{\pi}$.

(ii) $\gamma(G:M_1)_{\pi} = \gamma(G:M_2)_{\pi}$ implies $[G:M_1]_{\pi} = [G:M_2]_{\pi}$ for any M_1, M_2 in $\lambda(G)$.

PROPOSITION 3.10. Let G be a p-solvable group and $|\Sigma_{\mathcal{D}}(G)| \ge 2$. Then G is fi-solvable if $\chi(G:M_1)_{ff} = \chi(G:M_2)_{ff} = 1$ for all M_1 , M_2 in $\Sigma_{\mathcal{D}}(G)$ with equal normal index.

PROPOSITION 3.11. Let G be a group with $\Lambda(G) \neq \emptyset$. Then G is π -solvable if $\gamma(G:M)_{\pi} = 1$ for each M in $\Lambda(G)$.

PROPOSITION 3.12. Let G be a p-solvable group or p be the largest prime dividing |G| and $\Sigma_{p}(G) \neq \emptyset$. Then G is π -solvable if $\mathcal{L}(G:M)_{\pi} = 1$ for each M in $\Sigma_{p}(G)$.

PROPOSITION 3.13. Let G be a group with $|\lambda(G)| \ge 2$. Then G is π -solvable if $\gamma(G:M_1)_{\pi} = \gamma(G:M_2)_{\pi} = 1$ for all M_1 , M_2 belonging to $\lambda(G)$ with equal normal index.

PROPOSITION 3.14. If a group G has a π -solvable maximal subgroup M with $\gamma(G:M)_{\pi}$ = 1 then G is π -solvable.

PROOF. Let G satisfy the hypothesis of the proposition. Then G is not simple. For, otherwise, $|G|_{\Pi} = \mathcal{N}(G:M)_{\Pi} = 1$ and so G is Π -solvable. Let N be a minimal normal subgroup of G. If N \subseteq M then N is Π -solvable and also, by induction, G/N is Π -solvable and hence G is Π -solvable. If N \notin M then G=MN and since G/N \cong M/MaN, G/N is Π -solvable. Also by hypothesis $|N|_{\Pi} = \mathcal{N}(G:M)_{\Pi} = 1$ and so N is Π -solvable. Hence G is Π -solvable.

4. SOME RESULTS ON SUPERSOLVABLE GROUPS.

THEOREM 4.1. Let G be a p-solvable group and suppose that for each c-maximal

subgroup M of G, [G:M] $_p$ = 1 or p. Then G is supersolvable if and only if η (G:M) is square-free for each M in Σ_0 (G).

PROOF. Let G satisfy the hypothesis of the theorem. We claim that $\Sigma_{p}(G)$ is empty. If possible, let there exist M in $\Sigma_{p}(G)$. Then G is not simple. For otherwise, $|G| = \eta(G:M)$ is square-free and so G is supersolvable. Let $\eta(G:M) = |H/K|$, where H/K is a chief factor of G and H is minimal in the set of normal supplements of M in G. By hypothesis |H/K| is square-free and hence H/K is supersolvable. Thus H/K is a solvable minimal normal subgroup of G/K. So H/K is an elementary abelian q-group for some prime q. Consequently $\eta(G:M) = |H/K| = q$, a prime, which is a contradiction. So $\Sigma_{p}(G)$ is empty. By definition $G=S_{p}(G)$ and hence G is solvable we shall now show that $\Lambda(G)$ is empty. If possible, let there exist M in $\Lambda(G)$. Then since $\eta(G:M) = [G:M]$, [2, Corollary of Theorem 1], it follows that $\eta(G:M)$ is composite and hence p divides [G:M]. Now the solvability of G implies that [G:M] is the power of the prime p. By hypothesis, $[G:M]=[G:M]_p=p$, a prime, which is a contradiction. Hence $\Lambda(G)$ is empty and consequently G=L(G). Hence G is supersolvable.

Conversely if G is supersolvable then $\gamma(G:M)=[G:M]=a$ prime for each maximal subgroup M of G and hence the assertion immediately follows.

PROPOSITION 4.2. Let p,q be two distinct primes. Suppose that G is either p-solvable or q-solvable. Then G is supersolvable if and only if $\eta(G:M)$ is square-free for every M in $\Sigma_{\mathcal{P}}(G)$ or $\Sigma_{\mathcal{Q}}(G)$.

PROPOSITION 4.3. If G contains a supersolvable maximal subgroup M such that $\operatorname{core}_{G}(M)=(1)$ and $\eta(G:M)$ is square-free then G is supersolvable.

PROOF. Let G be simple. By hypothesis, $|G| = \gamma(G:M)$ is square-free. So G is supersolvable. We now assume that G is not simple. Let N be a minimal normal subgroup of G. Since $\operatorname{core}_{G}(M) = \langle 1 \rangle$, it follows that N \notin M and so G=MN. By hypothesis $|N| = \gamma(G:M)$ is square-free and so N is supersolvable. Since $G/N \cong M/MnN$, it follows that G/N is supersolvable. Thus G/N and N are both solvable. Hence G is solvable. Now since N is a minimal normal subgroup of the solvable group, it follows that N is an elementary abelian p-group for some prime p. Hence |N| = p and consequently N is cyclic. Therefore G is supersolvable.

PROPOSITION 4.4. If G contains a supersolvable maximal subgroup M such that $\eta(G:M)$ is square-free and the Fitting subgroup. F(G), is not contained in M then G is supersolvable.

ACKNOWLEDGEMENT. We are thankful to the learned referee for his valuable suggestions.

REFERENCES

- 1. BAER, R. Classes of finite groups and their properties, <u>Illinois</u> J. <u>Math.</u>, <u>1</u> (1957), 115-187.
- BEIDLEMAN, J.C. AND SPENCER, A.E. The normal index of maximal subgroups in finite groups, <u>Illinois</u> J. <u>Math.</u>, <u>16</u>(1972), 95-101.
- 3. BHATIA, H.C. <u>A generalized Frattini</u> subgroup of a finite group, Ph.D.thesis, Michigan State University, East Lansing, 1972.
- HHATTACHARYA, P. AND MUKHERJEE, N.P. A family of maximal subgroups containing the Sylow subgroups and some solvability conditions. <u>Arch. Math.</u> 45(1985), 390-397.

- BHATTACHARYA, P. AND MUKHERJEE, N.P. On the intersection of a class of maximal subgroups of a finite group II, J. <u>Pure Appl. Algebra</u>, <u>42</u>(1986), 117-124.
- 6. DESKINS, W.E. On maximal subgroups, <u>Proc. Symp. Pure Math. Amer. Math. Soc.</u>, <u>1</u>(1959), 100-104.
- 7. DUTTA, T.K. AND BHATTACHARYYA, A. A generalisation of Frattini Subgroup (Accepted for publication. <u>Soochow Journal of Mathematics</u>).
- 8. GORENSTEIN, D. Finite Groups, New York, 1968.
- MUKHERJEE, N.P. A note on normal index and maximal subgroups in finite groups, <u>Illinois J. Math.</u>, <u>75</u>(1975), 173-178.
- MUKHERJEE, N.P. AND BHATTACHARYA, P. On the intersection of a class of maximal subgroups of a finite group, <u>Canad. J. Math.</u> <u>39</u>(1987), 603-611.
- 11. SCOTT, W.R. Group theory, Prentice Hall, New Jersey, 1964.

64