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Abstract. This paper is concerned with the applications of Newton’s and chord methods in the computations
of the bifurcation solutions in a neighborhood of a simple bifurcation point for prescribed values of the
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1. INTRODUCTION
Many problems in applications are formulated as

Gx,\)=0, (L.1)
where G: H xR — H is a smooth (nonlinear) map satisfying
G(O,N)=0; (1.2)

H is a real Hilbert space and A is a real parameter which often represents some physical quantity.

The solution curve Iy: x(A) = 0 is called the trivial solution curve. A point (0,Ag) €T is called a

bifurcation point if there exists a smooth curve I';:x; = x;(A) of nontrivial solutions of (1.1) which is defined
in some neighborhood of (0, ;) and passing through it. It follows from the Implicit Function Theorem that
a necessary condition for (0, ) to be a bifurcation point is that the Frechet derivative G,(0, 2,) is singular.
On the other hand the singularity of G, (0, Ao) is not a sufficient condition for (o, o) to be a bifurcation point.
Some sufficient conditions for (0,Ag) € I’y to be a "simple" bifurcation point will be stated in Section 2.

This paper is concerned with the numerical computations of the nontrivial solution curves of (1.1) in
a neighborhood of a simple bifurcation point (0,A;). Many excellent analytical and numerical treatments
of this problem exist in the literature. The reader is referred to [1]-{7], and the references therein for an
extensive account of the subject. In almost all the previous numerical works the parameter A is treated as
a variable and is determined along with the "state" variable x. However, in applications A represents a
physical parameter and it is often required to determine the state variable x for some given values of the
parameter A. In this paper we examine the applications of Newton’s and chord methods in solving (1.1)
for x while A is kept fixed near a simple bifurcation point A,.

The rest of the paper is organized in three sections. In Section 2 we present some well known pre-
liminary results, regarding the solution set of (1.1) which are based upon the Implicit Function Theorem
and state a convergence theorem for Newton’s and chord methods due to G. Moore [7]. In Section 3 we
present and prove the convergence of some numerical schemes for computing the nontrivial solution curves
of (1.1) in a neighborhood of a simple bifurcation point (0,A,) for given values of the parameter A. In
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section 4 we illustrate the use of the schemes developed in Section 3 by applying them to a finite dimensional
numerical example.

2. PRELIMINARIES

All the results and proofs stated in this section are well known and we present them here for com-
pleteness. We present some sufficient conditions for a point (0, Ag) of Iy to be a bifurcation point and state
a basic convergence theorem for Newton’s and chord methods.

We assume that the Frechet derivative G° = G,(0, A,) satisfies, for some A E R, the conditions

(a) N(G))is one-dimensional spanned by ¢, (9, ¢) = 1,

(b) N(GY)is one-dimensional spanned by 1 = 0,

(© R(G))=N(G;) and R(G]") = N(G,Y", 2.1
(d) a=(Gag)=0,

(e) <\P, ¢) =1,
where G{, = G,,(0,),) and the notations L*, N(L) and R(L) denote the adjoint operator, the null and the

range spaces of a linear operator L, respectively. Under the assumptions (a)-(e) of (2.1), (0, A¢) is abifurcation
point. To see this we decompose H as

H =())®R(G,). 23)
using (2.3), each x € H can be written in the form
X=€0+wW, 2.4)

for unique e €M and w ER(GY’). Writing A = Ay + 4, using (2.4) and

H = (y)®R(G),

we can decompose equation (1.1) into the two equations

0) G(s¢+w,k+u)—(w,G(E¢+w,M+u))ﬂ—;-fF-0. 5
(i) (W,G(ep+w,Ag+p))=0.
Let K(w, &, ) denote the left hand side of equation (i) of (2.5). Then K(0,0,0) = 0 and Ky(0,0,0) = G?,

which has bounded inverse from R(G"") to R(G?). This enables us to apply the Implicit Function Theorem
to equation (i) of (2.5) to conclude the existence and uniqueness of a smooth function w = w(g, ) defined
in some neighborhood M of (0,0), such that

K(w(e,p),e,n)=0, (e,W)EM.
It follows that, in M, equation (1.1) reduces to
8(E,1) = (P, G(e¢ +w(e,n), A+ 1)) = 0. (2.6)

Defineh(e,p) = %g(e, w). Since h(0,0) = 0and 4,(0,0) = @ = 0, we can apply the Implicit Function Theorem
to conclude the existence and uniqueness of a smooth function p(e) defined in some neighborhood of € = 0
such that
h(e, (€)= 0,
for each € in that neighborhood.
The smoothness of w(g, i) and p(e) allow us to expand about € = 0 to obtain the following expansions

w(e, 1) = epw, + 7w, +£0((| ] +| | ), @n



NEWTON'S AND CHORD METHODS TO BIFURCATION PROBLEMS 149

E, Ea+EE,+EE,

We) = “Z" ——az———ez +0(e%), (2.8)
where
@) w=A'p- Gf"(c,"@ —a ﬁ%) i

) wz-A"¢-G:’"(G:,w-mG:.w)wT),

1
©  E=3(1.Ga09),

1 .
(@ Em g Go0w) + 5 (0, Gomi0) + 2 (0, Glatd) + (0, Gowy)
(e) E,=($,Gowy),
O Ey=(0,GLow) + 300Gt £ (0, G009),

A’ and A" are parameters to be determined by the conditions ($, w,) = 0 and (¢, w,) = 0, respectively, and
G2 denotes G(0,A), etc.

We gather the conclusions of the above computations in the following theorem.
2.1 Theorem: A point (0,2) on I, which satisfies conditions (a)-(¢) of (2.1) is a bifurcation point.

Furthermore, there exists exactly one bifurcation branch of solutions (x(g), A(€)) passing through (0,1)
which is (locally) given by

x(€) = €9 +w(e, u(e) ,
Me) =2+ (e)
where w(g, u(e)) and p(e) are given by (2.7) and (2.8), respectively.
We now state a convergence result for Newton’s and chord method from [7).
2.2 Theorem: Let H, and H, be Hilbert spaces and F(U,3) be a mapping from H, xR into H,. Assume

that F is continuously differentiable with respect to U and continuous with respect to 8. Let U°(8) be a
continuous mapping from R* into H, such that for some 8, > 0, F,(U%3),8) has a bounded inverse T(5)
for all 0 < d < 3, which satisfies

@@ | TEFU’s),8)| =n®),
®)  ITEIFAU,8)-FAV,d)]| s&®), for U,V ENu(U®)),
where Ny, (U°(d)) is the neighborhood of U°(d) with radius 2n(3) and n(d) and &(d) satisfy n(3)E(d) = 0(8)

as 8 — 0. Then there exists 0 < d, < §; and a continuous mapping U*(5) from (0, 8,) into H; which is the
unique solution of F(U,d) =0 in Nz,,(,,)(U"(b)) and the Newton’s iterates

U™*'=U" - F; (U, F(U",9),
converge to U*(d) for each 6 €(0,5,).
Furthermore, if condition (b) is replaced by

© | TE){FAU’®),8)(U-V)-[F(U,8)~-F(V,0)]}| st®)|U-V]|, for
U,V ENyo(U0)),

where E(8) = 0(8) as 6 — 0, then there exists 0 < d, < §, and a continuous mapping U*(d) from (0, 8,) into
H, such that U*(8) is the unique solution of F(U, ) = 0 in Ny (U %(8)) and the chord iterates
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U™*' = U"-F;(U°(),8)F(U",5),
converge to U*(8) for each d € (0, ,).

3. NEWTON’S AND CHORD METHODS
In [6], Decker and Keller introduced a method for constructing the bifurcation branches near a simple
bifurcation point (0,2,). In that paper the equation

G(ep +w,hg+p) =0, 3.1
was replaced by an "inflated" system
F(y,e)m [g‘” ko *“’] 0, (32)

where y = (:) €H xR. Using the initial guess y° =0, they proved the convergence of Newton’s and

chord iterates of (3.2) to a nontrivial solution y(g) of (3.1) for each given € in 0 < | €| = &, provided &, is
small enough. Thus, in this method both the state variable x and the bifurcation parameter A are treated as
unknowns and are approximated as functions of the parameter €. This method cannot be used in practical
problems where it is required to approximate the state variable x for some given values of A. On the other
hand it is not possible in general to parameterize x using the bifurcation parameter A; for example; in the
case when nontrivial solutions only occur at the bifurcation point. This shows that some additional
assumptions are to be imposed.

In addition to conditions (a)-(e) of (2.1) we will assume that either
(Non-degenerate case) Ey=0 3.3)
%‘0’ (3.4)
hold, and show that the methods of [6] can be modified to approximate the nontrivial solutions of (3.1)
with A being fixed near the bifurcation point A,.

Let H, denote the Hilbert space H x R with inner product

<(:l) ' (::))' wuw) +ey,

(Degenerate case) E,=0, E;=0,

and define F: H; xR — H, by
F(U,N) - [ Gl +w, M) 3.5)
(6,w)
forU = (‘:) € H,N€R. For fixed A, using (2.7) and (2.8) we define the initial guesses
- A—
U°(A)-(?) iUl Ry 3.6)
€ E,

U - (5:’2) , é-z\/"’—-——%::;’ , A=), G.7)

for the non-degenerate case (3.3) and degenerate case (3.4), respectively.
For a given A near Ay we will prove that both of Newton’s and chord iterates with initial guess (3.6)

or (3.7), according to whether condition (3.3) and (3.4) hold, converge to a unique nontrivial solution U*
of the equation
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B= VB -4E

2 R
where B = b,,(€) + by(€) and E = by, (€)b(€) — byo(E)by(E). From (3.8) we have
(a) FU(E)Q)I(é) - b"(é)@l(é) + b,z(é)q?'z(é)

Differentiating equation (a) with respect to €, setting € = 0 and using (3.10) we obtain

(6200 -22G30] _ os :
(b) =TV g Y 4 Fyd,(0) = b, (0)D, + B,,(0)D,,
0

for the non-degenerate case (3.3), and

© G%"‘" + F20,(0) = 5,,(0)D, + 5 ,(0)D,,
for the degenerate case (3.4). The solvability conditions of (b) and (c) are
@  B0)=E,,
and
(&) b6,(0)=b,(0)=0,
respectively. From (d) it follows that the eigenvalues of B(g) are of the form (3.12) with y = % It follows
from (e) that

. 2w,
®  00=(7).
‘ "
for some constant 1. Differentiating equation (a) once more and setting € = 0 gives

4Gow, +2Gwy0 + G ¢¢¢—£G°¢ 05 . .
=TT T e T e a |+ Fyd,0)=b5,,(0)®, + b5 (0)D,,
0

whose solvability condition is
b,(0) = 4E,,

and this proves that the eigenvalues of B(&) in the degenerate case are of the form (3.12) with y = 1.
The following result follows from Lemma 3.1.
3.2 Lemma: For small enough £ > 0 the linear operator Fy(€) has a bounded inverse such that

. 1
LACRUEIE
where vy is as in Lemma 3.1.

To examine the convergence of Newton’s and chord iterates we need to estimate | F5'(€)F(€)] . This

is done in the following Lemma.

3.3 Lemma: For small enough € > 0 we have
| FZ'@F @) = 0™

where y is as in Lemma 3.1.
Proof: We note that for the non-degenerate case

o] 1 Eo 0
F(é) - € ( EG,::¢¢ _;ka¢) + O(EJ)
0

and for the degenerate case
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FWU,\)=0.
We will denote F(U°, A), FAU®, ) and F(U°, Ao) by F(€), F,(€) and FJ, respectively.
We observe that
0
Fo- [ e o
@) 0

and that Lemma 5.6 [6] implies that Fy, F(€) and F,(E) satisfy the properties

(i) Fp is a Fredholm operator with zero index, where N(F?) and N(FZ') are spanned by @, = ((1))

and ¥, = (g’) , respectively,

(ii)  the zero eigenvalue of ) has algebraic multiplicity two,

(iii)  there exist smooth functions ®,(€), D(€), ¥,(€), ¥€),

=[5 o] 0 50-[520 520
defined for | €| <, for some & > 0, such that
[5"(&) 2 u(é)] [zﬁ; =B() [218 , (3.8)
[0 2] 2@ wie) - 69
D,0)=D,, D,0)~ (((I;) , P0)=",, W, (0)= ((l)) ,
8(0)-1?(0)-[‘1’ g] (3.10)

(iv)  there exists & > 0 such that for each € in | €| < the restriction of the linear operator Fy(€) to the
subspace N(g) spanned by ®,(€) and ®,(€) has two eigenvalues which are the same as those for B().
Furthermore, H, can be decomposed into

H,=NE)®H\), (3.11)
where
H\(e)={U EH;: (¥(e),U)=0,i = 1,2},
and the restriction of Fy,(€) to H,(€) has bounded inverse.
It follows from property (iv) above that in order to examine the rate at which | F'(€)| tends to infinity

as € tends to zero it is enough to examine the behavior of the two eigenvalues of B(g). Those eigenvalues
are studied in the following lemma.
3.1 Lemma: The two eigenvalues of B(g) have the form

a=C&+0E), (3.12)

where C is constant and y = % or 1 according to whether condition (3.3) or (3.4) is satisfied, respectively.

Proof: The eigenvalues of B(E) are given by
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[ 4G ow, +2G°w,0 + G m-gE-’c;“
F(E) =16 xx 2 xx""2 XX a xk¢ + O(E‘) .
0

It follows from these relations that

(WELFE)=0E), i=12,
for the non-degenerate case, and

M;(E)’F(E)) - O(E‘) ’ im 1’ 2)
for the degenerate case. From (3.11), F(€) can be written (uniquely) as

F(€) = 8,®,(€) + 8,D,(€) + hy(¢),
for some constants 8,, 8, and some h,(€) € H,(¢). Furthermore, the constants &, and , are determined by
the relations
8, = (Pe).F(e),
62 - (‘pl(é)’ F(E» .
These relations and the fact that F(€) has a bounded inverse on H,(g) imply the estimate
IFG'@F @] = | F5'©)(3,6,) + 8,2, + | F5 @)
< 0(5201) + O(EI 01)
- O(EI q)
It follows from Lemmas 3.2 and 3.3 that the functions 1)(€) and E(€) of Theorem 2.2 satisfy
nE)=0E""") and EE)=0(),

for both the nondegenerate and degenerate cases. This proves the following theorem.
3.4 Theorem. There exists > 0 such that for A in 0 <|A -2 <, both of Newton’s and chord iterates

with initial guess U°(€) converge to a unique solution U* of the equation
F(U,N)=0.

4. NUMERICAL EXAMPLE
In this section we illustrate the use of the numerical schemes developed in Section 3 by applying them
to approximate the nontrivial solutions of the (finite dimensional) equation

-"'2‘ +"13 +2x1x§-)\xl
x, 2
G(( ),x) - =0, 4.1)

X} +x +-;-xfx2+(1 -\,

in a neighborhood of the simple bifurcation point (0,0), for several prescribed values of the bifurcation
parameter A.
Using the same notations as in Section 3 we note that the inflated system corresponding to (4.1) is
wy +(w, +€)’ +§(w1 +EWZ - Nw, +€)
w, 2
F||{w,|, A
€

| (wy +£)° + W2 + 2wy + €, 4 (1= Ny | =0 42
1 2 2 1 2 2

w

and, for a given A near 0, the initial guesses for the nontrivial solutions are given by
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©)
wy 0
©
w, - 0

) +VA,

, (4.3)

for both Newton’s and chord methods.

In Table 4.1 we present the numerical results obtained by applying Newton’s and chord methods to
(4.2) using the initial guesses (4.3). In this table (W, w,?), i = 1,2, denote the two nontrivial solutions
of (4.2) and N and C denote the number of iterations required for the convergence of Newton’s and chord
methods, respectively.

4.1 Remark. As expected, Table 4.1 shows that the number of iterations needed for the convergence of
the chord method is larger than that for Newton’s methods and that both of them increase as A increases
away from the bifurcation point.

4.2 Remark. Observe that the numerical schemes developed in Section 3 may be used to approximate
the bifurcation solutions corresponding to different values of A near the bifurcation point in parallel.

A W Wi, ™) (WP wi,e®) N|C
.01 |(0,-1.00(=4), 1.00(-1)) |(0,-1.00(=4),-1.00(-1))| 2 | 2
05 |(0,-2.56(-3),2.24(-1)) |(0,-2.56(-3),-2.24(-1))| 3 | 3
.10 |(0,-1.05(-2),3.16(-1)) |(0,-1.05(-2),-3.16¢-1))| 3 | 4
.15 |(0,-2.40(-2), 3.86(-1)) |(0,-2.40(-2),-3.86(-1))| 4| s
20 |(0,-4.32(-2), 4.44(-1)) |(0,-4.32(-2),-4.44(-1))| 4| 7
25 |(0,-6.75(-2),4.93(-1)) [(0,6.75(-2),-4.93(-1))] 4| 9
30 [(0,-9.60(2),5.35(~1)) |(0,-9.60(-2),-5.35(-1))| 5 | 12
35 |(0,-1.28(-1),5.70(-1)) [(0,-1.28(-1),-5.70(-1))] 5 | 19
40 |(0,-1.61(-1),6.00(-1)) |(0,-1.61(~1),-6.00(-1))| 5 | 28

TABLE 4.1
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