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ABSTRACT. Several generalized Wallman type spaces are considered as well as various lattices
of subsets therein. In particular, regularity of these lattices and consequences are investigated. Also
considered are necessary and sufficient conditions for these lattices to be Lindelof as well as replete,
prime complete, and fully replete.
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1. INTRODUCTION.

Let X be an arbitrary set and £ a lattice of subsets of X such that §, X € £. A(L) designates
the algebra generated by £, and I(L) is the set of zero-one valued finitely additive measures on
A(L).

I,(L) denotes those elements of I(£) that are o-smooth on £, and I°(L) those which are
o-smooth on A(L) i.e. are countably additive. Ir(L) denotes those elements of I(L) which are
L-regular; while I§(L) denotes those elements of Ir(L) which are also in I,(L), and consequently
in I°(L). These various sets of measures have distinguishing lattices of subsets within them which
are taken as bases for closed set topologies, and are called generalized Wallman spaces.

Some of these spaces such as Ir(L) and Ig(L) where L is disjunctive are well known and in
special cases give known topological spaces.

We wish to investigate in some detail the spaces I,(L) and I?(L) and the lattices of these spaces
(see below for explicit definitions). In particular, we investigate when these lattices are regular and
subsequent consequences of regularity. We also find necessary and sufficient conditions for thewe
spaces to be Lindel6f and also, for a number of these lattices, consider questions of repleteness
prime completeness and fully repleteness.

We begin in section 2 with some background information on these spaces and lattices and
summarize a variety of known results. Then in section 3 and 4 we pursue our investigation as
indicated above.

The author takes pleasure in acknowledging his indebtedness to the referee for greatly improving
the presentation of this paper.

2. BACKGROUND AND NOTATIONS.
We follow standard notation and terminology such as appears in

of this here for the reader’s convenience.
Let X be a set and £ a lattice of subsets of X such that 8, X belong to L. A(L) denotes the

algebra generated by £, and M(L) denotes those finitely additive, bounded, non-negative measures
on A(L) which are non-trivial. M, (L) denotes these elements of M(L) which are o-smooth on L.
That is, p € M, (L), if for L, € L and L, | @, we have u(L,) — 0. M?(L) denotes these elements
of M(L) which are g-smooth on A(L) or equivalently here, are countably additive.

[1,2,4,6,11]. We review some
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Next, Mp(L) denotes these u € M(L) which are L-regular. That is u(A) = sup{u(L)|
L C AL € L) where A € A(L). Note, if p € Mg(L) and y € M,(L) then u € M?(L) Such
measures are denoted by M(L). Finally the zero-one valued subsets of the above are denoted by
I(L). I,(L),I°(L), Ir(L) and I{(L) respectively.

If u € M(L), the support of u, S(u) is defined as follows. S(u) = N{L € L|u(L) = p(X)}. We
recall (see [2,6,9]). L is compact if and only if S(u) # @ for all u € I(L), or equivalently S(u) # @ for
all u € Ir(L), or equivalently S(u) # @ for all u € II(L). Here, r e II(L)if m: £ — {0,1},7(.X) =1,
and 7 is monotone, and 7(A N B) = w(A)m(B),A,B € L, and n(8) = 0. II,(L) denotes these
x € TI(L) which are g-smooth on £. For = € II(L), S(x) is defined as for u € I(L). With these
definitions in place we have: L is countably compact (c.c.) if and only if I(£) = I, (L), equivalently
Ir(L) = I(L), or (L) = M,(L). L is Lindeldf if and only if for all * € II,(L),S(m) # 8. L is
replete if S(u) # @ for all u € I§(L). L is prime complete if S(u) # @ for all p € I,(L), and L is
fully replete if S(u) # @ for all 4 € I°(L).

We can characterize other more familiar lattice-topological concepts in terms of these measures
For example (see [2,6,9]) £ is disjunctive if and only if p, € Ir(L) for all z € X, where p, is the
Dirac measure concentrated at z. £ is regular if and only if for uy,p2 € I(L) with gy < po(L), that
is py(L) < pa(L) for all L € L we have S(p1) = S(p2)-

L is T; if and only if S(u) = @ or a singleton for all p € I(L), and £ is normal if and
only if for p < (L), < vao(L) where p € I(L),v1,v2 € Ir(L), we have v; = v;. Finally, we
note that various sets of zero-one valued measures on A(L) can be topologized using Wallman
topologies. Let I be any subset of I(L), e.g. Ir(L),I,(L), etc. Let A € A(L), and denote by
H(A) = {u € I|lu(A) = 1}. Then for A, B € A(L) we have: H(AUB) = H(A)UH(B),H(ANB) =
H(A)N H(B),A D B implies H(A) D H(B). If {4, : z € X} C I. Then H(A) D H(B) implies
A D B. Also, I — H(A) = H(A') where throughout the prime will designate the complementary
set. The Wallman topology on I is obtained by taking the set of all H(L),L € L as a base
for the closed sets. In the particular cases of I = I(L),Ir(L),I,(L),I°(L),If(L) denote these
bases by V(L), W(L)V,(L),V°(L), W,(L) respectively. Some of these spaces have been thoroughly
investigated. In particular Ig(L), 7W(L) (7L in general denotes the lattice of arbitrary intersections
of sets of £) which is a compact T} space, and assuming £ is disjunctive then it is T3 if and only
if £ is normal. I(L),7V(L) is compact Tp. If £ is disjunctive then the lattice W, (L) in IZ(L)
replete. We propose to investigate further topological properties of these general Wallman space~
and to relate some of these topological properties to the underlying lattice L.

Related material can be found in [4,7,10]. A few of these results will be cited in the next ~ection
to show how it interrelates with our work.

3. TOPOLOGICAL PROPERTIES OF THE WALLMAN SPACES.

We note first some known facts about various Wallman spaces, (see [2,9,11,12]). W(L) is a
compact lattice in Ig(L), V(L) is a compact lattice in I(L£). If £ is disjunctive, then W, (L) is
replete in I§(L). Vo(L) is prime complete in I,(L), and V?(L) is fully replete in I°(L). Moreover,
we have (see (8]).

THEOREM 3.1. I(L),V(L) is compact Ty. Also, V(L) is Ty if and only sf I(L) = Ir(L),
which is equivalent to V(L) being disjunctive and is also equivalent to V(L) being regular.

REMARK. I(L) = Ig(L) is equivalent to £ being an algebra. Various proof of this appear in
[8,9]. It is even true for abstract ‘distributive lattice (see [3]).

For the pair Ir(L), W(L) we have ([7]).

THEOREM 3.2. If £ is disjunctive then the following are equivalent:

(1) W(£) is normal.
(2) W(L) is regular.
(3) W(L) is Ty.
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REMARK: Since W(L) is compact, TW(L) is compact and Ir(L), 7TW(L) gives well-known
compactifications of X in the case where X is a topological space, and L consist of closed sets, zero
sets, clopen sets, etc.

We consider now W, (L) in I§(L). If £ is disjunctive, then W,(L) is replete. It is prime
complete if and only if

(3.1) For any p € I,(L) there exist a v € I§(L) such that g < v(L). See [10]. Also if we
consider I§(L) with the topology of closed sets TW,(L) then, if £ is disjunctive, IZ(L), W,(L) is
Lindelof if and only if

(3.2) For any 7 € II,(L) there exist a u € I§(L) such that = < u(L).

In a similar manner, considering the pair I,(£) and V, (L), we have that the topological space
I,(L), 7V,(L) is Lindelof if and only if

(3.3) For any 7 € I1,(L) there exist a u € I,(L) such that = < u(L). Again see [10] for details.

We further note (details can be found in [5]).

THEOREM 3.3. If £ is disjunctive, then in I3(L) the lattice W,(L) is fully replete if and
only if

(3.4) For any pu € I°(L) there exists a v € I§(L) such that u < v(L).

We now consider the pair I7(£) and V().

THEOREM 3.4. Consider the condition

(3.5) For any 7 € II4(L) there exist a u € I°(L) such that = < u(L).

Then we have
1) If (3.5) holds and if £ is fully replete, then £ is Lindel6f.
2) If £ is Lindelof then £ satisfies (3.5).
3) L satisfies (3.5) if and only if the topological spaces I7(L),7V?(L) is Lindel6f.

4. FURTHER PROPERTIES OF THE LATTICES W, (L), V,(£) and V?(L).

It has been shown in [7] that if £ is disjunctive, then W, (L) is regular if and only if the following
condition holds.

(4.1) For all yuy,p2 € I(L) and v € I{(L) p1 < p2(L) and py < v(L), then pp < v(L) Tt s
conditions of this type that we wish to consider next.

We first note that in dealing with the various Wallman spaces, I, (see section 2) a bijection
can be set up between elements of I and zero-one valued measures on H(A(L)) by defining ¢’ on
H(A(L)) by p'(H(A)) = p(A), where A € A(L), and p € I. In order to establish this bijection in
the case I = Ir(L) or I{(L), and H(L) = W(L) or W,(L) respectively, we must assume that £ is
disjunctive. In what follows I # Ir(L) or I§(L), and it will not be necessary to assume that £ is
cbsjunctive.

THEOREM 4.1. Consider I,(L),V,(L). Then V,(L) is regular sf and only if the following
hold.s:

(4.2) Forall py,pz € I(L) and v € I,(L) if py < p2(L) and py < v(L), then pa < v(L).

PROOF. Suppose condition (4.2) holds, then we wish to show that V,(L) is regular. Let
1.1 € I(Vo(L)), and py < pp(Vo(L)) where py, pa € I(L). Then S(uy) C S(p)).

If A€ S(u}) then A € I,(L) and py < AML). But pf < ph(Ve(L)) implies 3 < p2(L). Thus by
condition (4.2) ua < A(L). Hence A € S(u}y). Thus S(puh) = S(p}), and V,(L) is regular.

Conversely, suppose V,(L) is regular. Let py,p2 € I(L) and A € I,(L),; < pz(L) and

# S v(L). Then py < py(Vo(L)), and py < v'(Ve(L)). Since V,(L) is regular, we have S(y}) =
Stuy) = S(v'). But v € S(v'). So v € S(uh), and, therefore, u, < v(L). Thus condition (4.2) holds.
Using this result we can prove the following:
THEOREM 4.2. I,(L£),V,(L) is regular if and only I,(L) = I{(L).
PROOF. Let u € I,(L). There exists a v € Ig(L) such that g < v(L). Therefore u' <

1"(V5(L)) where p',v' € I(V,(L)). But S(p') = S(v') since V, (L) is regular. Now u € S(p'). So
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n € S(v'). Thus v < u(L). Hence p = v and consequently u € I§(L), and I, (L) = If(L) .

Conversely, suppose I,(L£) = IZ(L). Then V(L) = W,(L). Now let py,p2 € I(L),v € I,(L)
and yy < (L), 1 < v(L).

Then since I,(L) = I§(L), u; € I(L). So py = pz and u; = v. Hence condition (4.2) holds
and 1,(L) is regular.

For the pair I°(L),V?(L), we have;

THEOREM 4.3. In I°(L). if V°(L) ss regular, then I°(L) = I{(L).

PROOF. Let p € I°(L) and pu < v(L) where v € Ig(L). Then p' < v'(V?(L)) where
u'.' € I(V°(L)). Thus S(u') = S(v') since V(L) is regular. But p € S(i'). So p € S(') and
1 < u(L). Hence p = v € Ir(L) and therefore p € I§(L). Consequently I°(L) = I%(L).

REMARK. If I°(L) = I§(L) then it does not necessarily follow as in the case of I,(£) and
15(L) that V(L) is regular. To prove this we would have to consider the following condition
analogous to (4.2), namely

(4.3) For all py,uz € I(L) and v € I°(L) if py £ p2(L) and y; < v(L). Then pz < v(L).

The problem in verifying this condition is that if u; < v(L), then it only follows that u; € I,(L),
and one cannot say that y; € I§(L) as we could in the case of I,(L) and V,(L).

Finally we consider a refinement of condition (3.1), namely:

(4.4) For any p € I,(L) there exists a v € I?(L) such that u < v(L).

THEOREM 4.4. L satisfies condition(4.4) if and only if I°(L),V?(L) is prime complete.

PROOF. Let A € I,(V°(L)). Then A\ = p' where u € I,(L), and by (4.4) there exists a
v € I7(L) such that u < v(L). Hence A = p' < v'(Vo(L)) and v' € I°(V?(L)). But V(L) is fully

replete, so S(v') # 8. Thus S(u') = S()) # 8, and V?(L) is prime complete.

Conversely, suppose V?(L) is prime complete. Let y € I,(L). Then u' € I,(V°(L)). Hence,
S(p') # 0 since V(L) is prime complete. Then there exist a v € S(p') where v € I°(L) and clearly
¢ < v(L). Thus (4.4) is satisfied.
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