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ABSTRACT. A convergence space is a set together with a notion of convergence of nets. It is well
known how the one-point compactification can be constructed on noncompact, locally compact
topological spaces. In this paper, we discuss the construction of the one-point compactification
on noncompact convergence spaces and some of the properties of the one-point compactification

of convergence spaces are also discussed.
AMS(MOS) SUBJ. CLASSFICATION: Primary: 54A20, 54B20, 54D35.

KEYWORDS: €-subnet, reversible €-subnet, pseudotopological, pretopological, limit superior,
limit inferior, power set, compact, compactification.

1. Preliminaries.

The following definitions were introduced in [1] in establishing the definition of convergence

spaces.
A net is a map s whose domain is a directed set. Let s be a net with domain D. If

m € D, then s(m) will be denoted by s,,. If D is directed by the relation > and m € D, then
{n € D|n > m} will be denoted by mD. If E C D, then E is cofinal in D if for each m in E,
mDNE # 0 and E is residual in D if for each m in E, mE = mD. The domain and range of
a function f will be denoted by D(f) and R(f) respectively. If X is a set and s is a net with
domain D, then s is in X if R(s) € X. Suppose s is a net with domain D and ¢ is a net with
domain E. Then t is a subnet of s, denoted by t < s, if for each n € D, there exists m € E

such that t(mE) C s(nD). A universal net is a net which has no proper subnet.

A convergence structure on the set X is a class C of ordered pairs such that (1) if (s,z) €
C,thensisanetin X and z € X, and (2)if (s,2) € C and t is a subnet of s, then (t,z)eC. If

C is a convergence structure on X , then (X, C) or just X is called a convergence space, and the

statement s converges to z, denoted by s — z, means (s, z) € C. Furthermore, X is compact if
every net in X has a convergent subnet, and X is Hausdro ff if no net in X converges to two

distinct points of X.
Unless it is specified, X will be used to denote a convergence space throughout this paper.
The following theorem is straightforward.

THEOREM 1.1. A convergence space X is compact if and only if every universal net in X

converges.
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Next, we introduce €-subnets and reversible €-subnets which are important in our discus-
sion.

Let S be a net of sets with domain D and let ¢ be a net with domain E. The ¢ is called
an € —subnet of S, denoted by t <¢ S, if for cach n € D, there exists m € E so that for each
p > m there is ¢ > n such that t, € S;. Similarly, the notation S <5 t will mean that for
cach m € E, there exists n € D so that for cach ¢ > n, there is p > m such that t; € S,.

Furthermore, t is called a reversible € —net of Sift <¢ S and § <3 t.

Let X be a convergence space, and let S be a net of sets in X. Then the set of all z
such that some €-subnet of S converges to z is called the limit superior of S, denoted by
lim sup S, and the set of all z such that some reversible €-subnet of S converges to z is called
the limit inferior of S, denoted by lim inf S.

Z. Frolik [2] established the following theorem for topological spaces and So [3] showed that
the result also holds for convergence spaces.

THEOREM 1.2. If X is a convergence space, S is a net of sets such that for each n € D(S)
S5, CX,and T < S, then liminf SCliminf TClimsup T C lim sup S.

The next lemma follows immediately from the definitions involved.

LEMMA 1.1. Suppose s is a net and T and S are net of sets. If s <¢ T'and T € S, then
s<eS.

LEMMA 1.2. If s <¢ S, then there is a subnet U of S such that s is a reversible €-subnet
of U.

PROOF. Let D = D(S) and E = D(s). Let F={(m,n)€ D x E |s, € Sm} with the
cross product order. Then F is a directed set.

Let U be the net with domain F defined by U(m,n) = S,,. Let p € D. Since s <¢ S,
there exists ¢ € E such that every element of s(¢E) is belongs to some element of S(pD). Let
(m,n) > (p,q). Then we have m > p and U(m,n) = Sp. Thus U < S.

Let k € E. Since s <¢ S, there exists ¢ > k such that s, € U(p,q) for some p in D. Let
(m,n) > (p,q). Then we have n > k and s,, € U(m,n). Therefore U <5 s.

Let (h,k) € F. Since s <¢ §, there exists p € E such that if n > p, there is m > h such
that s, € U(m,n). Let ¢ € E such that ¢ > k and ¢ > p. Hence g € kE such that if j > g,
there is i > h such that s, € U(i,j), i.e., if j > g, there is (4,5) 2 (h,q) 2 (h,k) such that
s, € U(i,7). Therefore s <¢ U.

THEOREM 1.3. If S is universal, then lim sup S = lim inf S.

PROOF. Let z € lim sup S. Then there exists an €-subnet s of S such that s — z. By
Lemma 1.2, § <5 s. Therefore s is a reversible €-subnet of S and hence z € lim inf S. Since
lim sup S C lim inf S, it follows from Theorem 1.2 that lim sup S = lim inf S.

If X is a set and s is a net with domain D, then s is in X if R(s) C X, s is eventually in
X if for some m in D, s(mD) C X, and s is frequently in X if for each m € D s(mD)NX #0

LEMMA 1.3. If s is a net in X and A is a nonempty subset of X, then s is frequently in

A if and only if some subnet of s is eventually in 4.
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PROOF. Suppose s is frequently in A. Let D = D(s). Then for each ¢ in D, s(iD)NA # 0.
Let m € D and E = {n € mD|s,, € s(mD)N A}. Then E is a dirccted sct. Let u = s|E, and
let 2 € mD. Then there exists ) € E such that u(jE) C s(iD) N A and hence u(jE) C s(iD)
and u(jE) C A. Therefore v < s and w is eventually in A.

Supposc some subncet u of s is cveutually in A. Let D = D(s), E = D(u), and n € D.
Then there exists m € E such that u(mE) C s(nE). Since u is eventually in A, there exists
i € E such that u(iE) C A. Let 3 > m and j > 1. Then u(jE) C s(nE) N A. Therefore s is
frequently in A.

The following lemma is Proposition 3.3 of [4].

LEMMA 1.4. If s is a net in the sct X, then s is universal if and only if for each subset Y’
of X, s is eventually in ¥ or cventually in X — Y.

2. THE POWER SET AND THE ONE-POINT COMPACTIFICATION OF X
Let PX denote the power set of X. If X is a convergence space, L € PX, and S is a net

in PX, then the statement that S — L in PX means that L = lim sup S = lim inf S.

It follows from Theorem 1.2 that PX is a convergence space.

In this scction, we investigate the convergence structure of the power set, PX, of a conver-
gence space X and the construction of the one-point compactification X* of X. We then show
that X* is homeomorphic to a subspace of PX*.

It should be noted that in [5] and [6], G.D. Richardson and D.C. Kent studied the one-point
compactification and the star compactification on convergence spaces defined by filters. There
are some similarities between the construction of the one-point compactification of convergence
spaces defined by filters and convergence spaces defined. One of the essential differences is that
the convergence structure defined by filters has the constant convergence property built in the
dcfinition, while in the convergence structure defined by nets the constant convergence property
is not assumed.

Let f be amap from X to Y. The stateinent f is continuons means that if s — z in X,
then fos — f(z). The statcment that f is a homecomorphism means that f is one-to-one,
onto, continuous, and f~! is continuous. X is said to be homeomorphic to Y if there is a
homcomorphism from X onto Y.

THEOREM 2.1. If X is Hausdorff and X' = {{z}|z € X}, then X is homeomorphic to
the subspace X' of PX.

PROOF. Let b be a map from X to X' such that for cach 2 € X, h(z) = {z}. Then it is
obvious that h is onc-to-onc and onto. Let s — x. Then s is a reversible €-subnet of h o s and
hence z € lim inf hos. Since h(z) = {z}, M(z) Clim inf hos. Let y € lim sulp hos. Then
there exists an €-subnet ¢ of 2 os such that ¢ — y. Since X is Hausdorff and ¢t < s, x = y and
hence y € h(z). Therefore lim sup hos C h(z) C lim inf hos. It follows from Theorem 1.2
that hos — h(s). Let S — {z} in X'. Then there exists a reversible €-subnet u of S with
domain E such that v — 2. Let v = h™1 0 .S and D = D(S). Let n € E. Then there exists

m € D such that if p > m, there is ¢ > n such that S, 3 u, and hence v, = h™1(S,) = u,.
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Therefore v < u and henee /7" o S — h™'({x}). Since L is onc-to-onc and onto, and both h
and A~ are continuous, X is homeomorphic to the subspace X' of PX.

Let X be a convergence space. If A € X, then M is the sct of all points z such that some

net in M converges to . A set D is dense i X if D = X. A compacti frcation of a convergence
space X is an ordered pair (Y, h) such that Y is compact, h is 2 homcomorphism of X into Y,
and h(X) is densc in Y.

Let X be a noncompact convergence space, and let oo be a point not in X. Let X* =
X U {o0}. Viewing the result in Lemma 1.3, we define the convergence in X* as follows.
Suppose s is a net in X*. Let s — ¢ in X'* for some = in X if and only if s is frequently in X
and s|X — z, and let s = oo in X* if and only if no subnet of s in X converges in X.

Suppose s is a universal net in X. Then by Lemma 1.4, s is eventually in X or {oo0}. If s
is eventually in {00} or s|X # z for any x in X, then no subnet of s in X converges in X and
hence s — oo. Otherwise s — z for some z in X according to the convergence defined on X*.
Conscquently, we have the following theorem.

THEOREM 2.2. If X is a noncompact convergence space, then X* is a compactification
of X.

THEOREM 2.3. If X is a noncompact, Hausdorff convergence space, then X* is homeo-
morphic to the subspace {{x}]r € X} U {8} in P(X U {o0}).

PROOF. Let X' = {{z}]x € X}, and let 1’ be the map from X* to X' U {#} such that for

each z in X, k'(z) = {2}, and I'(00) = §. Notc that ' is an extension of the homeomorphism

h in Theorem 2.1. It is clear that &' is one-to-one and onto. Suppose s — oco. Let u be an
€-subnet of h' 0o s. Then u|X 4 z for cach z in X. Therefore lim sup h' os = 0. Thus A’ is
strongly continuous. Let S be a net in X' U {#} with domain D and s = h'~! 0 §. Suppose
S — {z} for some z in X. Then there cxists a reversible €-subnet u of S with domain E such
that u — z. Let n € E. Then there exists in € D such that if p > m, there is ¢ > n such that
Sp 3 ug and hence s, = u,. Thereforc s < u and thus s — z. Hence h'"! 0 § — h'~!({z}).
Suppose S — @. Then lim sup S = lim inf S = § and hence no €-subnet of S converges
in X. Nows=h""10S. Let v <s. Thenv <e S and hence v does not converges in X.
Therefore s — oo and thus 2'~! 0 .S — h'~!(#). Therefore &’ is a homeomorphism, and hence
X* is homeomorphic to X’ U {#]}.

A net of nets with domain D is a net s with domain D such that for each n € D, s,

is a net. If s is a net of nets with domain D and for each n € D, D(s,) = D,, then the
diagonal net generated by s, denoted by As, is the net t such that D(t) = D x I{D,|n € D}
with the cross product order and for each (n, f) € D(t), t(n, f) = sa(f(n)).

The statement that X is pseudotopological at z mcans that if s is a net in X such that
each universal subnet of s converges to r, then s — z. The statement that X is pretopological
at z means that if s is a net of ncts in X with domain D such that for each n € D, s, — z,
then As — z.

THEOREM 2.4. If X is Hausdorff and pseudotopological, then X* is pseudotopological.
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PROOF. Let 2 € X* and let s be a net in X* such that cvery universal subnet of s
converges to z in X*. Supposc 7 is in X. Let u be a universal subnet of s. Since u — z, u is
frequently in X and u|X — z. By Lemma 1.3, u is eventually in X. According to Theorem
1.4, s is frequently in X. Let v be a universal subnet of s|X. Then v is a universal subnet of s
and hence v — z. Since X is pscudotopological, s|X — z and hence s — z. Suppose r = oo.
Let t be a subnet of s. Suppose ¢ converges to some point y in X. Let u be a universal subnet
of t. Since u — z, X is Hausdorff, u < t, and ¢t — y, it follows that y = z. This contradicts the
supposition that z = co. Therefore no subnet of s converges in X and hence s — co. Thus X*
is pseudotopological.

The following three lemmas are Theorems 14, 4, and 8 in [1].

LEMMA 2.1. In order that the convergence space X is pretopological at z it is necessary
and sufficient that if s is a universal net of universal nets in X such that for each n in D(s),
S$n — z, then As — z.

LEMMA 2.2. If s is a net of nets with domain D and ¢ < As, then there exist a cofinal
subset E of D and a net u of ncts with domain E such that for each n in E, u, < s, and
Au <t.

LEMMA 2.3. If s is a net with domain D and t is n net of nets with domain D such that
for cach n € D t,, is eventually in s(nD), then At < s.

The following cxample shows that although a convergence space is pretopological, its one-
point compactification may not be pretopologcial.

EXAMPLE. Let X = {1,2,3,---} and let s — z if and only if s is eventually in {z} for
each net s in X and z € X. Suppose u is a net of nets in X with domain D such that u, — z
for each n € D. Let v be a net with domain D such that v, = z for each n € D. By Lemma
2.3, Au < v, for each n € D. Therefore Au — z and hence X is pretopological.

Let X U {oo} be the one-point compactification of X, and let s be the net of nets with

domain N, the set of natural number, such that for each n € N, the domain of the net s, is N

also.
1 <
If n is odd, define s,(m) = { (lm +1)=n ig ;n;mn

If n is even, define sp(m) = oo for every n € N. Let t be a net with domain N and let

1 ?f n i‘s odd 1y follows that ¢ ke
oo if n is even.

since t|X is a subnet of ¢t such that {|{X — 1. Therefore As / oo and hence the one-point

ty = sp(n) for eachn € N. Thent < As and t, = {

compactification of X is not pretopological.

THEOREM 2.5. Let X be a Hausdorff, pretopological convergence space, and X* be the
one-point compactification of X. Suppose for every net of nets s in X* with domain D, s
satisfies the condition that if for each n € D, s,, — 00, Az — 0o. Then X* is pretopological.

PROOF. Let s be a universal net of universal nets in X* with domain D such that for
eachnin D s, — = in X*. Suppose z € X. Then for each n € D some subnet t, of s, is
eventually in X and hence s,|X — z. Let u be the net with domain D such that for each

n € D, u, = t,|X. Since for each n € D, u, < s, and so u,, — z. Hence As — z because X
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is pretopological. Since X* is compact and As is universal, As — y for some y in X*. From
Lemma 2.5 and the fact that X* is Hausdroff, As — .

Suppose z = co. By the assumption As — oo.

It follows from Lemma 2.1 that X* is prctépological.

The following theorem is stated in 7], a proof is given for the sake of completeness.

THEOREM 2.6. If X is compact, pscudotopological, and Hausdorff, then X is topological
if and only if X is regular.

PROOF. Suppose X is topological. Let s be a net of nets in X with domain D such that
As — rand for cach n in D, s,, — p,. Let ¢ be a universal subnet of p win domain E. Then
q — y for some y € X since X is compact. Fix my € D. Since ¢ < p, there exists ny € E such
that for each i > ng, there is 3 > mq such that ¢, = p;. Let ¢ be a net with domain ngE such
that for each : € myE, t, = s, with 3 € myE. Then t, — ¢, for cach i € moE. Thus At — y
because X is topological. Since X is Hausdorff, z = y and hence ¢ — z. Since every universal
subnet of p converges to & and X is pscudotopological, p — & and hence X is regular.

Suppose X is rcgular. Let p be a net with domain D such that p — z and let s be a net
of nets with domain D such that for cach n € D, s,, — p,. Let u be a universal subnet of As.
Then u — y for some y € X. By Lemma 2.1, there exist a cofinal subset F of D and a net V'
of nets with domain F such that for each n in F, v, < s, and Av < u. Therefore Av — y. Let
q = p|F. Then v, togy, for every m € F. Since X is regular, ¢ — y. Since X is Hausdorff and
¢ < p, ¢ — z and hence u — z. Since X is pseudotopological and every universla subset of As
converges to z, As — z and hence X is topological.

The following corollary follows immediately form Theorems 2.6 and 2.8.

COROLLARY. Let X be a noncompact, Hausdorff, pseudotopological space, and let X*

be its one-poit compactification. Then X* is topological if and only if X* is regular.
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