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ABSTRACT. A convergence space is a set together with a notion of convergence of nets. It is well

knowr how the one-point compactification can be constructed on noncompact, locally compact

topological spaces. In this paper, we discuss the construction of the one-point compactification

on noncompact convergence spaces and some of the properties of the one-point compactification

of convergence spaces are also discussed.
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1. Preliminaries.

The following definitions were introduced in [1] in establishing the definition of convergence

spaces.

A net is a map s whose domain is a directed set. Let s be a net with domain D. If

m D, then s(m) will be denoted by s,. If D is directed by the relation > and m D, then

{n Din > m} will be denoted by roD. If E C_ D, then E is cofinal in D if for each m in E,

mD f3 E and E is residual in D if for each m in E, mE roD. The domain and range of

a function f will be denoted by D(f) and R(f) respectively. If X is a set and s is a net with

domain D, then s is i__n_n X if R(s) C_ X. Suppose s is a net with domain D and is a net with

domainE. Then tisasubnet of s, denoted byt < s, if for each n D, there exists m E E

such that t(mE) C_ s(nD). A universal net is a net which has no poper subnet.

A convergence structure on the set X is a class C of ordered pairs such that (1) if (s,z)
C, then s is a net in X and x X, and (2) if (s, z) C and is a subnet of s, then (t, z) C. If
C is a convergence structure on X, then (X, C) or just X is called a convergence space, and the
statement s converges to x, denoted by s x, means (s, x) E C. Furthermore, X is compact if
every net in X has a convergent subnet, mad X is Hausdroff if no net in X converges to two
distinct points of X.

Unless it is specified, X will be used to denote a convergence space throughout this paper.

The following theorem is straightforward.

THEOREM 1.1. A convergence space X is colnpact if and only if every universal net in X
converges.
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Next, we introduce (-subncts and reversible E-subnets which are important in our discus-

sion.

Let Sbe anet of sets with domain D and let be anet with donain E. Tiler is called

an -subnet of S, denoted by <e S, if for each n ( D, there exists m E so that for each

p >_ m there is q >_ n such that t), Sq. Similarly, the notation S < will mean that for

each m E, there exists n E D so that for each q > n, there is p >_ m such that tq ( S.
Furthermore, is called a reversible -net of S if _< S and S < t.

Let X be a convergence space, and let S be a net of sets in X. Then the set of all x

such that some -subnet of S converges to x is called the limit superior of S, denoted by

lira sup S, and the set of all x such that some reversible (-subnet of 5’ converges to x is called

the limit inferior of S, denoted by lira inf S.

Z. Frolik [2] established the following theorem for topological spaces and So [3] showed that

the result also holds for convergence spaces.

THEOREM 1.2. If X is a convergence space, S is a net of sets such that for each n fi D(S)
S, C_ X, and T _< S, then lira inf S C_ lira inf T C_ lira sup T C_ lira sup S.

The next lemma follows inunediately frown the definitions involved.

LEMMA 1.1. Suppose s is a net and T and S are net of sets. If s -<e T and T S, then

s<eS.
LEMMA 1.2. If s _<e S, then there is a subnet U of S such that s is a reversible (-subnet

of U.

PROOF. Let D D(S) and E D(s). Let F={(m,n) eDxE [s,e S,,,} with the

cross product order. Then F is a directed set.

Let U be the net with domain Fdefincdby U(m,n) S,,. Let p D. Sinces_<e S,
there exists q e E such that every element of s(qE) is belongs to some element of S(pD). Let

(m, n) >_ (p, q). Then we have m >_ p and U(m, n) S,. Thus V _< S.

Let k E. Sinces_<e S, thcrecxists q>_ ksuchthat sq U(p,q) for somepinD. Let

(m, n) _> (p, q). Then we have n >_ k and s,, E U(m, n). Therefore V _< s.

Let (h,k) F. Since s <:e S, there exists p E such that if n _> p, there is m >_ h such

that s,, U(m,n). Let q Esuchthat q >_ k andq >_p. Henceq kEsuchthat ifj >_q,

there is >_ h such that s U(i,j), i.e., if j >_ q, there is (i,j) >_ (h,q) >_ (h,k) such that

s U(i, j). Therefore s _< e U.

THEOREM 1.3. If S is universal, then lira sup S lira inf S.

PROOF. Let x lira sup S. Then there exists an -subnet s of S such that s ---, x. By

Lemma 1.2, S _<9 s. Therefore s is a reversible E-subnet of S and hence x lira inf S. Since

lira sup S C_ lira inf S, it follows froxn Theorem 1.2 that lira sup S lira inf S.

If X is a set and s is a net with domain D, then s is in X if R(s) C_ X, s is eventually in

X if for some m in D, s(mD) C_ X, and s is frequently in X if for each m D s(mD) X

LEMMA 1.3. If s is a net in X and A is a nonempty subset of X, then s is. frequently in

A if and only if some subnet of s is eventually in A.
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PROOF. Suppose is frequently in .4. Let D D(s). Then for each in D, s(iD)NA # O.
Let m e D and E {n e ,nD[s,, e s(mD) A}. Then E is a directed set. Let u alE, and

let E roD. Then there exists j E E such that u(jE) C_ s(iD) fq A and hence u(jE) C_ s(iD)

and u(jE) C_ A. Therefore u < and ,, is eventually in A.

Suppose some subnct ,, of s is event,rally in A. Let D D(s), E D(u), and n D.

Then there exists m G E such that u(mE) C_ s(nE). Since u is eventually in A, there exists

E such that u(iE) C_ A. Let j >_ m and j >_ z. Then u(jE) C_ s(nE) A. Therefore s is

frequently in A.

The following lemma is Proposition 3.3 of [4].

LEMMA 1.4. If s is a net in the set X, then s is universal if and only if for each subset Y

of X, s is eventually in Y or eventually in X Y.

2. THE POWER SET AND THE ONE-POINT COMPACTIFICATION OF X
Let PX denote the powcr set of X. If X is a convergence space, L X, and S is a net

inPX, then the statement that S L in TOX means that L=limsupS=liminfS.

It follows from Theorem 1.2 that T’-X is a convergence space.

In this section, we investigate the convergence structure of the power set, 7:’X, of a conver-

gence space X and the construction of the one-point compactification X* of X. We then show

that X* is homeomorphic to a subspace of T’X*.

It should be noted that in [5] and [6], G.D. Richardson and D.C. Kent studied the one-point

compaetification and the star compactification on convergence spaces defined by filters. There

are some similarities between the construction of the one-point compactifieation of convergence

spaces defined by filters and convergence spaces defined. One of the essential differences is that

the convergence structure defined by filters has the constant convergence property built in the

definition, while in the convergence structre defined by nets the constant convergence property

is not a.ssumcd.

Let f bc a map from X to Y. The statcmcnt f is continuou,s means that if ,s --, x in X,
then f o s f(x). The statcncnt that f is a homcomorphism means that f is one-to-one,

onto, continuous, and f- is continuous. X is said to be homeomorphic to Y if there is a

honacomorphism frown X onto Y.

THEOREM 2.1. If X is nausdorff and X’ {{x}lz 6 X}, then X is homeomorphic to

thc subspacc X of 7:’X.

PROOF. Lct h, bc a map from X to X’ such that for cach x X, h(z) {z}. Then it is

obvious that h is onc-to-onc and onto. Let s x. Then s is a revcrsible 6-subnet of h o s and

hcncc z lira inf h o s. Since h(x) {x}, h.(z) C_ lira inf h o s. Let y 6 lira sup h o . Then

thcre exists an &subnct of h o s such that y. Since X is Hausdorff and _< s, x y and

hence y h(x). Thereforc lira sup h o s c:_ h(x) C_ lint inf h o s. It follows from Theorem 1.2

that h o s h(s). Let S {x} in X’. Then there exists a reversible 6-subnet u of S with

domain E such that u---, x. Let v h,-aoSandD D(S). Let n E. Then there exists

,n D such that if p _> m, there is q _> n such that Sv 3 uq and hence vv h-(Sv) uq.
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Thcrcforc v _< u and 1,c,,,-,; h-’ o S h-’({x,}). Sincc h is onc-to-onc and onto, and both h

md h- arc cont,inuos, X i l,’rllic to tim subspacc X of X.

Let X be a conw.rgcnc. SlW,. If I K, then 4 is the set of all points x such that some

net in M convcrgc to .. A s.t D i de., X if D X. A compactif,cation of a convergence

spacc X is an ordered pair (Y, h) ,’1 tlt " is compact, h is a homcomorphisxn of X into Y,
and h(X) is dense in Y.

Let X be a noncompact converg’tce Sl;tce ad let be a point no in X. Le X*

X U {}. Viewing tlw rc,slt it Lcnla 1.3, we define the convergence in X* follows.

Sul)ose s is a net in X*. Let . in X* for some x in X if mxd only if s is frequently in X

and sIX , and let s in X* if and only if no ubnet of s in X converges in X.

Suppose s is a universal net in X. Then by Lemma 1.4, s is eventuly in X or {}. If s

is eventually in {} or siX z for any .: in X, then no subne of s in X converges in X d

hence s . Otherwise s x fir some x in X according to the convergence defined on X*.

Consequently, we have the following thcorcn.

THEOREM 2.2. If X is a xtl’Xill,;t’t, c,nvcrgcncc pacc, then X* is a compactification

of X.

THEOREM 2.3. If X is a otiCOml,ct Hasdorff convergence space, then X* is homeo-

,,orphi to thc ,,bVc {.,: }. e X 0 i,, (X }).
PROOF. Let X’= {{x}].,: X}, and let h’ be the map fi’o,n X* to X’U {0} such that for

each x ia X, h’(x) {x}, and h’() 0. Note that h’ is an extension of the homeomorphism
h in Theorem 2.1. It is clear that h is one-to-one and onto. Suppose s . Let u be an

-subnet ofhos. Then uJX x for each x in X. Therefore lira sup hos . Thus h is

strongly continuous. Let S be a net in X’U {$} with domain D d s h- o S. Suppose

S {x} for some x in X. Then there exists a reversible -subnet u of S with domMn E such

that u x. Let n E. Then there exists n D such that if p m, there is q n such that

S, 9 u, and hence s uq. Therefores 5 u d thuss x. Hence h’-l oS h’-’({x}).
Suppose S . Then lira sup S lira inf S and hence no -subnet of S converges

in X. Now s h-I oS. Let v s. Then v S and hence v does not converges in X.

Therefore s mad thus h’- o S h’-(O). Therefore h’ is a homeomorphism, d hence

X* is homeomorphic to X’ O {$}.

A net of nets with domain D is a net s with domMn D such that for each n D, s,,

is a net. Its is a net of nets with domain D and for each n D, D(sn) Dn, then the

diagonal net generated by s, denoted by &s, is the net such that D(t) D x H{Dn[n D}
with the cross product order and for each (n, f) D(t), t(n, f) s,(f(n)).

The statement that X is pseudotopological at x means that if s is a net in X such that

each universal subnet of s convcrgcs to x, then .s x. The statelnent that X is pretopological

at x means that if s is a nct of ncts in X with domain D such that for each n D, Sn -- X,

then As x.

THEOREM 2.4. If X is Hausdorff and pseudotopological, then X* is pseudotopological.
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PROOF. Let x E X* and h.t .s lc ;t net in X* such that every universal subnet of s

converges tox inX* Supposex isinX. Let u bcauniversalsubnet ofs. Sinceu-x, uis

frequently in X and ulX x. By Lemma 1.3, u is eventually in X. According to Theorem

1.4, s is frequently in X. Let v bc a univcrsd subnct of .s[X. Then v is a universal subnet of s

and hcncc v x. Since X is pscudotopological, s[X x and hence s x. Suppose x co.

Let be a subnet of s. Suppose converges to some point y in X. Let u be a universal subnet

of t. Since u x, X is Hausdorff, u < t, and y, it follows that y x. This contradicts the

supposition that x co. Therefore no subnet of s converges in X and hence s -- o0. Thus X*

is pseudotopological.

The following three lemmas arc Theorems 14, 4, and 8 in [1].
LEMMA 2.1. In order that the convergence space X is pretopological at x it is necessary

and sufficient that if s is a universal net of universal nets in X such that for each n in D(s),
s,, x, then As x.

LEMMA 2.2. If is a net of nets with donain D and < As, then there exist a cofinal

subset E of D and a net u of nets with domain E such that for each n in E, u,, < sn and

Au<t.

LEMMA 2.3. If s is a net with domain D and is n net of nets with domain D such that

for each n E D t, is eventually in s(D), tlwn At < a.

Tim following example shows that althougla a convergence space is pretopological, its one-

point compactification may not be pretopologcial.

EXAMPLE. Let X {1,2, 3,-.-} and let s x if and only if s is eventually in {z} for

each net s in X and x 5 X. Suppose u is a net of nets in X with domain D such that u, x

for eachn D. Let v beanet with domainD such that v,, z for eachn D. By Lemma

2.3, Au < v, for each n D. Therefore Au --} x and hence X is pretopological.

Let X U {co} be the one-point compactification of X, and let s be the net of nets with

domain N, the set of natural number, such that for each n E N, the ,domain of the net s, is N

also.
ifm<_n

Ifnisodd, defines,,(rn)= (m+l)-n ifn>m.
If n is even, define s,(m) co for every n N. Let be a net with domain N and let

t,, s,(n) for each n e N. Then < A and t,, { if n is odd It follows that 7/-, oo
co if n is even.

since fiX is a subnet of such that fiX 1. Therefore As 7/-, co and hence the one-point

compactification of X is not pretopological.

THEOREM 2.5. Let X be a Hausdorff, pretopological convergence space, and X* be the

one-point compactification of X. Suppose for every net of nets s in X* with domain D, s

satisfies the condition that if for each n D, s,, co, Ax co. Then X* is pretopological.

PROOF. Let s be a universal net of universal nets in X* with domain D such that for

each n in D an x in X*. Supposex X. Then for each n E D some subnet tn ofsn is

eventually in X and hence s,lX x. Let u be the net with domain D such that for each

n

_
D, Un tn]X. Since for each n D, u, < s, and so un --} x. Hence As --} x because X
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is 1)retopological. Since X* is COmlact and As is universal, As y for some in X*. rom
Lcmma 2.5 and the fact that X* is Hausdroff, As x.

Suppose x . By the assumption As .
It follows frown Lemma 2.1 that X* is pretlmlogical.
The following theorem is stated in [7], a proof is given for the sake of completeness.

THEOREM 2.6. If X is compact, pseudotopological, and Hausdorff, then X is topologicM

if and only if X is rcgular.

PROOF. Suppose X is topological. Let s be a net of nets in X with domain D such that

s xand for each n in D, ,, p,,. Lct q be a universal subnct of p win donain E. Then

q y for some g X since X is compact. Fix m0 D. Since q p, there exists n0 E such

that for each n0, thereis) m0 such that q, =p. Let be anet with domainn0E such

that for each m0E, t, . with 3 m0E. Then t, q, for each moE. Thus At y

because X is topological. Since X is Haush,rff, x y and hence q x. Since every universM

subnet of p converges to x and X is pscudotopological, p x and hence X is regular.

Suppose X is regular. Let p be a net with domMn D such that p x and let s be a net

of nets with donain D such that for each n G D, sn p. Let u be a universal subnet of

Then u y for some y X. By Lemma 2.1, there exist a cofinal subset F of D d a net V

of nets with domain F such that for each n in F, vn s,, and &v u. Therefore v y. Let

q pF. Then vm toq,, for every m F. Since X is regul, q y. Since X is Hausdod

q p, q x and hence u x. Since X is pseudotopologicM d every universla subset of

converges to x, As x and hence X is topological.

The following corollary follows immediately form Theorems 2.6 d 2.8.

COROLLARY. Let X be a noncompact, Hausdo, pseudotopological space, d let X*

be its one-poit conpactification. Then X* is topological if mad only if X* is regul.
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