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ABSTRACT. Combining Feller’s criterion with a non-uniform estimate result in

the context of the Central Limit Theorem for partial sums of independent

random variables, we obtain several results on the Law of the Iterated

Logarithm. Two of these results refine corresponding results of Wittmann
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Let X nl be a sequence of independent random variables with zeron’

means and finite variances. Let, for each n l,

ii EX2 FnS n X
=I

(x) P(S /s < x)n i=1 n n n

x
and (x) f (I//) exp(-t2/2) dt for

Feller (1970) proved the following remarkable criterion on the Law of the

Iterated Logarithm.

THREM A. Let X nl be a sequence of independent random variablesn’

with zero means and finite variances, and a nl a sequence of positiven’

numbers such that a /s T - If there exists a p 0 such thatn n

then

-,,-1 min{l (an+1 a )/a
n

P(S > a x) < m for x >n n n p

x for x < p,

limsuPn_ S /a p a.s.
n n

Let G be the collection of all real valued functions g of a real

variable with the following properties.

(a) g is nonnegative, even and nondecreasing in the interval (0, m).

(b) x/g(x) is nondecreasing in the interval (0, ).

Combining Feller’s criterion with a non-uniform estimate result in the

context of the Central Limit Theorem for partial sums of independent random

variables, we obtain several results on the asymptotic behavior of S /a with
n n

a " m (Theorems 2.2 2 3 2 4 and 2 5) We would like to discuss some
n

results of this genre available in the literature and compare them with the

results we have derived in this paper. Theorem 1.1 of Wittmann (1985), a

certain result of Egorov (1971), Theorem I of Teicher (1974), Theorem 1.1 of

Tomkins (1983) and Theorem 1 of Tomkins (1990) are some of the results we

seek out for comparison. Theorems 2.2 and 2.3 improve the general Law of the

Iterated Logarithm due to Wittmann (1985) from which many classical results

follow. Theorem 2.4 deals with the case of random variables X n > 1n’
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stochastically dominated by a nonnegative random variable X and improves the

corresponding theorem due to Egorov (1971) by weakening the condition from

EX2 < to E(X2/L2X) < . Here, and in what follows, Lx stands for log

maxtx,e) and LnX stands for L(Ln_I x) for n2.) In the same vein, two

examples are given to compare Theorem 2.5 with Egorov’s theorem. Example 4

shows that the conditions in Theorem 2.5 are, in some sense, optimal.

Recently, Tomkins (1990) obtained a general result on the Law of the Iterated

Logarithm. In Tomkins’s paper, no assumptions have been made about the

existence of any moments of X nl Our condition (2 3) is similar ton

Tomkins’s condition (5) or (5)’ However, our conditions are more easily

verifiable. Later, we provide an example satisfying the conditions of Theorem

2.2 and thus of Theorem 2.3 but not those of Theorem 1 of Teicher (1974) and

those of Theorem 1.1 of Tomkins (1983). See Example 1 below. We will also

provide another example which satisfies the conditions of Theorem 1 of

Teicher (1974) as well as the conditions of Theorem i.I of Tomkins (1983) but

not those of Theorem 2.2. Some additional comments will be made as and when

the occasion arises.

It should be remarked that in establishing Laws of Iterated Logarithms,

our improvements are achieved by combining the results on non-uniform

estimates in the Central Limit Theorem with Theorem A. The arguments appear

to be simple.

2. MAIN RESULTS

The following result deals with non-uniform estimates in the Central

Limit Theorem for sums of independent random variables. A proof can be given

following ideas in Katz (1963) and Bikelis (1966).

PROPOSITION 2.1. Let g G. Let XI, X2, ,Xn be independent

0 and E(X2random variables such that EX ig(Xi)) < m for every i. Then

for every x,

((l+lxl)s))-I i E(X2 ))IFn(X) (x)l <- A(l+Ixl)-2(Sng n =i ig(Xi (2.1)

where A > 0 is an absolute constant.
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Wittmann (1985) obtained the following general result on the law of the

terated logarithm.

THEOREM B. Let X n>l be a sequence of independent zero mean real
n

random variables with -’X* < m for every n>l and EX n>l
n n i=l

If, for some 0 < a <: 1,

and

n>l (s
n L2Sn El)In <

then

limn_ lim SUPn_ (Sn+ol/s) < mn n
(2.2)

and

1/2
lim supn_ Sn/[Sn(2L2s 1 a..

2 1/2
lim infn_ Sn/[Sn(2L2s =-1n

In the proof of the above theorem, Wittmann (1985) used the direct

estimates in the central limit theorem due to Butzer and Hahn (1978).

Wittmann (1987) generalized Theorem B covering every a > O. Combining

Proposition 2.1 and Theorem A, we will generalize Theorem B in a different

direction. Our proof seems to be simpler than that given by Wittmann (1985).

We would like to emphasize that the generalization of Theorem B by Wittmann

(1987) does not imply our generalization of Theorem B.

THEOREM 2.2. Let Xn, nl be a sequence of independent zero mean real

2random variables with EX2
< m for every nl- and s nl Ifn n =I i’

(2.2) holds and

n:>IE(X a
2

n g(Xn))/[ n g(an)] < m for some g G, (2.3)

(L2s2 1/2
where a s thenn n n

lim SUPn_ Sn/[Sn(2Ls) 1/] 1 a.s.

and

1/2
lim infn_ Sn/[Sa(2L2 sn -1 a.s.
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PROOF. Using Proposition 2.1 and (2.2), we have that for Ixl > 1,, 1/2 s2 1/2
>1

mn{1 (a -an)/an} IP(S < xs (L s (x(Ln+l n n n n

< C1 Zn>_l n+l
vn X a)/s E( gtX ))/[ g(a )]n n z=l n n

C1 ial(n:>i[Sn+l s
4

ss ]/[ L g(a )]) E(X g(X ))
n n n n

< CI ial(n:>i[Sn+l 4 2s ]/s E(X g(X ))/[(L s g(a )]n n

<: C2 ial
$.

2dx/x2) E(X2i g(Xi))/[(L2si) g(ai)]

C2 .ilE(X2
g(Xi))/[ai g(ai)] < m, by (2.3)

Consequently, if x > 1, then

if and only if

nl min{l, (an+l-an)/an P(Sn > anX) < a

s2) I/2) <nl min{l (an+l-an)/an) (i @(x(L
2 n

(2.4)

(2.5)

From (2.2), it is easy to see that (2.5) is equivalent to

n>l (s m
n+l Sn)/S (1 (x(L S2) 1/2) <n n

(2.6)

Observe that as n -
n

2/2 (x(L2s2)l/2)-I1 @(x(Lzs )1/2) (2z’) -1/2 exp{-x L2sn n

(2r)
-I/2 (LS2n) -x2/2 (x(L2 s2)l/2)-l"n

Thus for x i, (2.6) is equivalent to

Note that

nl [(s2n+l -S2n)/S2n] (LS2n)

jl t-1 (Lt)-x /2 (L2t)-I/2

-x2/2 (L2s2n)-1/2 <

dt < a for x > /,

implies

m for x $ /2
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-x /2 -1

.V>l[(Sn+1 -Sn)/Sn] (LSn) (L2Sn) < for x > /2

Therefore

m for x /2.

n>imin{l, (an+i-an)/an P(Sn > anX) < v for x > q2

m for x /2.

By Theorem A,

and

lim SUPn_ Sn/[Sn(2L2s2)I/2] 1 a.s.n

lim infn_ Sn/[Sn(2L2s2)l/2] -I a.s.
n

by replacing X by -X..

Looking at the proof of Theorem 2.2, in fact, we have virtually

established the following result. The reason that Theorem 2.2 is recast as

Theorem 2.3 is that it becomes transperent that the conditions of Theorem 2.3

are weaker than the conditions of Theorem 3 of Petrov (1975), p.305 and the

same conclusion holds.

THIREM 2.3. Let X n > 1 be a sequence of independent zero mean real
n

random variables with EX2n < m for every n _> I and s 2n i=l EX2i’ n_>l. If

Sn- as n- (R), limsuPn_ Sn+l/s < m and for all’x such that Ixl > 1n

then

and

limsuPn_# Snl[Sn(2L2Sn)Xl2] 1 a.s.,

liminfn_ Snl[Sn(2L2S2n)I/2] =-1 a.s.

REMARKS. In order to show that Theorem B of Wittmann (1985) is a special

case of Theorem 2.2 above, one merely needs to take the function g in

Theorem 2.2 to be" g(x) Ixl a, x e R. One should also note that with
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respect to Theorem 2.2 that Condition (2.3) requires more than finite second

moments of the random variables in order for it to hold.

We now glve an example for which the conditions of Theorem 2.2 (thus of

Theorem 2.3) are satisfied, but neither the conditions of Theorem 1 of

Teicher (1974} nor the conditions of Theorem 1.1 of Tomkins (1983) are

satisfied.

EXAMPI I. Define a sequence X nl of independent random variables
n’

as follows" for n 1,2,3,

P(X 1) 1/2,
n

and for n 4,

P(X 1) 1/2 (2Ln) -I"
n

P(X nI/2) (2nLn) -1"
n

P(X 0) (Ln) -I (rtLn) -I.
n

2
Clearly, EX 0 and EX2

1 for all n. Consequently, s n for all n.
n n n

Note that, for n 4,

E[Xn]3" 1 CLn) -I 1/2
+ n (Ln)

and thus,

n>1 (nL2n)-a/2EIXn 13 < (R)"

Therefore, by Theorem 2.2,

limsuPn_ Sn/(2nL2n)
1/2

and

However, since

iminfn_n Sn/( 2nL2n
2

and

1 a.s.,

-I a.s.

n3 (nLn)- (R)’

(nL3n)-1 ’
it can be verified that for every e > 0 and 6 > 0,

1/2(L n) -1/2) a),

and

nl (nL2n)-lE(x2I(enl/2(Ln2n)-1/2 < Ix] 6(nL2n)/2)) (R).
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Thus Theorem of Teicher /1974) and Theorem 1.1 of Tomklns [1983) are not

applicable here.

The next example satisfies the conditions of Kolmogorov’s Law of the

Iterated Logarithm (thus of Theorem 1 of Teicher (1974) and of Theorem 1.1 of

Tomkins (1983)), but not those of Theorem 2.2 above.

EXAMPLE 2. Let X n > be a sequence of independent random variables

such that for each n 1,

-1P(X 0) n (L n)(L3n)___n

and

/ -i/ -/ -P(X n (L n) (L3n) (2n) (L2n)(L3n)n

Clearly EX 0 EX2
1 and s n for all n. Further X nn n n n’

satisfies the conditions of Kolmogorov’s Law of the Iterated Logarithm. Thus

we have

imSUPrr. Sn/(2nL2n) 2
1 a.s.,

and

liminfn_ Sn/(2nL2n)I/2 1 a.s.

However, for any g G,

2nl E[Xng(Xn) ]/[nL2ng((nL2n) I/2)

nl [n(L2n)-l(Lan)-lg((n/((L2n)(L3n)))l/2)]/[nL2ng((nL2n)l/2)]
> n>l n-l(L2n)-2(L3n)-I/2 (R) (since x/g(x) T)-

Thus Theorem 2.2 is not applicable here.

Although Kolmogorov’s Law of the Iterated Logarithm (thus Theorem I of

Teicher (1974) and Theorem 1.1 of Tomkins (1983)) does not follow from

Theorem 2.2 above, we conjecture that Theorem 1 of Teicher (1974) and Theorem

1.1 of Tomkins (1983) (thus Kolmogorov’s Law of the Iterated Logarithm)

follow from Theorem 2.3 above. In fact, the classical Hartman-Wintner Law of

the Iterated Logarithm (1941) follows from our work. Let X, Xn, nl be a

sequence of independent identically distributed random variables such that

EX 0 and EX2
1. Set

I/2 I/2 2
a E(X21([X[<n )) (E(XI([X]<n ))) n > 1
n
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By Friedman-Katz-Koopmans Theorem (I966),

-i -1 -i/2jnl n SUPx [P(er n X
n =1

< x) (x)[ < (R).

Note that a 1 as n- x. By Theorem 2.3, it follows that

1/2
limsUPn_ Sn/(2nL2n) 1 a.s.,

and

liminfn_0 Sn/(2nL2n)l/2 -1 a.s.

Let X nl be a sequence of independent zero mean random variables

g G, and a nl a sequence of positive nmrbers such that a x as

n . Using Theorem 9 of Petrov (1975), p.267 and Kronecker’s lemma, one

can show that

imp es

’n:>l E[IXnl g(Xn)]/[an g(an)] < x (2.7)

S /a - 0 a.s. as n- x. (2.8)
n n

2 1/2
Theorem 2.2 shows that if (2.2) holds and a s (L2s)n n n nl, then

l E xl g(Xn)]/[ n g(an) < x (2.9)

implies that Xn, n>l obeys the Law of the Iterated Logarithm. Note that

conditions (2.7) and (2.9) do not imply each other. We now give a result

whose conclusion is in the spirit of (2.8) under a condition which is in the

spirit of (2.9). This result is a consequence of Proposition 2.1 and Theorem

A.

TttIK)REM 2.4. Let Xn, nl be a sequence of independent zero mean random

variables with EX2 < x for every nl and s nl Let a nln n n’

be a sequence of positive numbers and g e G. Suppose that

and

Then

an/Sn " imSUPn_ an+l /an < x, 2 .10

limn- Sn(L2S2n)l/2/an 0, (2. Ii)

nRl [EX2 g(Xn)]/[an n g(an) < x"

S /a -* 0 a.s. as
n n

(2.12)
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PROOF. It follows from Proposition 2.1 that for every x 0

IP(S /s < xa Is -(xa /s
n n n n n n

< A[i=lEXZig(Xi) [aZ
n g(an) ]’

where A > 0 is a constant depending only on x. Using (2.10), we have that

for x 0,

n>lmin{l’ (an+l-an)/an} IP(Sn < Xan (XanIsn)l

EX2 a2ng( )]< A n>l[(an+1-an)/an][i=l ig(Xi)]/[ a
n

3 an)] 2A ’i>i {n>i (an+l-an)/[ang( EXig(Xi

z (x)C il(a. t3 g(ai)]-1 dt) EXig

C .i>l[EXig(Xi)]/[a2ig(ai)] < m,

where C is also a constant depending only on x. Therefore, for every

>0

if and only if

n>l min{1 (an+l-an)/an} P(ISnl > ea <n (2.13)

-.-I min{1 (an+l-an)/a (-ea Is < mn n n

Observe that as n - m

(-eanlsn) o(exp(- :z :Z 2a 12s })n n

Since tlL2t is monotonically increasing on (0,m) thn Is L2s2]/a 0n n n

as n m if and only if [s Ls]/[(a2/L2a2)L2(a/L-a2)]n 0 as nn n n n z n

Consequently, (2.11) implies Is La ]/a2
0 i.e. s/a o(1/Ls)n n n n n n

as n . It now follows that

From (2.10),

exp(-ean2/2S2}n (exp{-2L2an}) as n- m.

nl (an+l-an)/a exp(-2L2an)n

< ’nl (an+l-an) l[an(Lan) 2]

C1 a [t(Lt)2]-1 dt < m.
1



CRITI:RION FOR THE LAW OF THE ITERATED LOGARITHM

Now we have that (2.13) holds for every E > 0. It is easy to see that

333

nV-gl min{1, ’.an+l-an)/an} P(’’ISnl > Ean) < for every e > 0.

From Theorem A,

S /a 0 a.s. as n- .
n n

REMARK. If Condition (2.11) is replaced by

1/2
imsUPn_ s (L s

n n
/a k < ,n

one can show by a similar argument that

limsUPn_ ls.l/an -< / h a.s.

When a sequence X n>l is stochastically dominated by a nonnegativen’

random variable X, Egorov (1971) gave the following sufficient conditions

for X n21 to obey the Law of the Iterated Logarithm.
n’

THEOREM C. Let X nl be a sequence of independent zero mean random
n’

variables with EX2n < for all nl and Sn =IEXi’ n>l. Suppose

there is a nonnegative random variable X such that for sufficiently large

n and x

If

and

then

(1/n)i=lP([Xil >x) < P(X > x). (2.14)

(2.15)

liminf s2/n > 0, (2.16)
n

and

limsuPn- Sn/[Sn(2L2s2)l/2]n 1 a.s.,

liminfn- Sn/[Sn(2L2S2n)1/2] -i a.s.

As a last application of Proposition 2.1, we shall extend the above

theorem.
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TH]REM 2.5. Let X nl be a sequence of independent zero mean random
rl’

variables with EX =IEX2< for all nl and s nl Suppose
rl n

there exists a nonnegative random variable X such that for all sufficiently

large n and x

If

and

then

(1/n)i=lP([Xi[ > x) P(X > x). (2.17)

E(X2/L2x < (2.18)

n
0 < liminfn_ s /n 5 limsuPn_ s /n <

I1

limsuPn_ [Sn[/[Sn(2L2S2n)I/2] N 1 a.s.

Moreover, if the following additional condition is satisfied

limn_ 1/n)i=1
E(X2 I([Xi[ > /iL2i)) O,

then

limsuPn_ Sn/[S (2L2S2n)1/2] 1 a.s.
n

and

2 1/2
liminfn_ Sn/[S (2L2s) -1 a.sn n

(2.19)

(2.20)

(2.21)

PROOF. For each n>l, let

Y X I([X < 4n L2n) Z X Yn n n n n n’

Y EY V Z EZ s ’Un n n n n n n

We first prove that from (2.17) and (2.19)

(i=iVi)l/n L2n - 0 a.s. as n - .
Observe that if N is large enough (assume N 2

m-1
for some ml)

(2.22)

< kn 2k P(X (2k-I L22k-) 1/2)
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< 4 [’ P(X > x L x) dx-o
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< 4 fo P(X2/L2x > (1/2)x) dx

It follows that

16 E(X2/L X) <

Zi//2n L2n -, 0 a.s. as n - . (2.23)

Note that (2.19) and ]EZn ]/Ex2n < [EX2//nn L2n]/EX2n -* 0 as n- c imply

=1
EZ./s - 0 as n -* (2 24)n

Now (2.23), (2.24) and (2.19) show that (2.22) holds which is equivalent to

ni=l Vi/[Sn(2L2S2n)l/2] "* 0 a.s. as n - c, (2.25)

by (2.19). To complete the proof of (2.20), we only need to prove

nal EIUn[3/(nL2n)3/2 < ’ (2.26)

in view of (2.19), s/sn _< 1 and Remark. If N is large enough

n>N E[Un [3/(n L2n)3/2 /nL2n
24 nN[fo t 2 P(IXn[ > t)dt]/(n L2n)

3/2

<: 24 .N[Jo t dt]/(n L2n)3/2

+ 24 .N[f/snL2n t 2 P(IXnl > t) dt]/(n L2n)
3/2

where is a fixed number large enough. Obviously, the first series

converges. By (2.17) and (2.18), we estimate the second series by following

/nL2n
np.N[fs t P([Xn[ > t) dt]/(n L2n)3/2

(2k L22k I/2
2 2

k

P([Xi[ > t) dt]/(2k- L22k-)3/2
i=2k-I

for some suitable m,

(2kL 2k) 1/2

<_ 8 Y,km[fo t 2
k P(X > t) dt]/(2kL22k) 3/2
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b.
Vk [fb 2

k8 k_>m "i=l
P(X t) dt](2kL 2k) 3/2

1-1

5 8 k,2m vik=l[b3i 2k P(X > bi_ l)]/(2kL22k)3/2
.)-k/2 (L 2k) -3/2] b P(X :> b8 >l[k>l i-1

<_ 32 i>l 2-i/2 (L22i)-3/2 b3"l P(X > bi_l)

i-1 P(X > (2 i-1 i-1)1/2) + 1]64[ial 2 L22

We conclude that (2.20) holds.

Under the conditions (2.19) and (2.21), it is easy to verify that

|mn_ s’/s and further it follows from (2 25) (2 26) and Theorem 2 2n n

that

and

limsUPn_ Sn/[Sn(2L2s2)l/2] 1 a.s.n

2 1/2
liminfn_ Sn/[Sn(2Ls =-I a.s.n

In view of the characterization of the law of the iterated logarithm in

Banach spaces given in Ledoux and Talagrand (1988), the condition (2.18)

merits special interest. Note that the conditions (2.18) and (2.21) both

follow from the condition (2.15) under which Theorem C operates. We shall

give an example which fails to meet the conditions of Theorem C but Theorem

2.5 is applicable.

EXAMPLE 3. Let Pn exp{en n>l and X n>l a sequence of
n

independent random variables with distributions given as follows.

P(X
n

x) (2p
n L4Pn)-X if x Pn

(112)(1 llL4Pn) if x I,

(I/L4Pn)(1 I/Pn), if x 0, for all nl.

It is easy to see that EX 0 and EX2
1 for all n>l. Let

n n
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GI(X) SUPn>I (i/n)=l P(IXil -> x)

G2(x) SUPn>l P(IXnl > x), -a < x < m.

337

Obviously, Gl(X) < G2(x) for all x and G2(x) 0 as x -* .
Consequently, both G

1
and G

2
are distribution functions. We

first show that

Jo x Gl(X) dx . (2.27)

In fact,

fo x Gl(X) dx a o x [SUPna1 (1/n)P(IXn[ >_ x)] dx

/Pk+l
:> k.l f.1_- x SUPn1 (1/n)P(lXn[ > x)] dx

Pk+l (x/(k+l)) P(lXk+ll > x) dx

k.l (k+l) Pk+l L4Pk+I]-I qPk+l
fPqk x dx

> (1/4) 11 1/[(k+l) L2(k+l)] .
Note that (2.27) implies that (2.15) fails. For, if any nonnegative random

variable Y satisfies

(l/n) i=1 P(IXi[ x) g P(Y x) for all x > 0 and n 1,

then from the definition of Gl(X)

Gl(X) < P(Y x) for all x 0

and from (2.27) we have that EY2 . Now we show that

In fact,

o (x/L2x) Gl(X) dx < m. (2.28)

(x/L2x) Gl(X) dx g 2 fo (x/L2x2) G2(x) dx

/P
x2[f2 (x/L2x) G2(x) dx + f2 (x/L2 G2(x) dx
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/Pn+t
+ n>l f (x/L2 x2) G2(x) dx]

/Pn

212 + p! + nl (pn+l/L2pn (1/(pn+l L4Pn+I)]

< 2[2 + Pl + n>l (1/n2)] < "
But (2.28) implies that the condition (2.18) holds where X is a random

variable with the distribution function 1 -GI. Moreover, as n- m

EX: I( IXnl qnLn) 1/L4Pn -* O.
n

It now follows that

EX2 I(IXil (iL2i)I/2) O.limn_ (l/n) ii=l
By Theorem 2.5

and

limsuPn_ Sn//2n L2n 1 a.s.,

liminfn_ Sn//2n L2n -1 a.s.

The following example shows that for a sequence Xn, nl to obey the

Law of the Iterated Logarithm, i.e.,

and

limsuPn_ Sn/[Sn(2L2S2n)1/2] 1 a.s.,

liminfn_ Sn/[Sn(2LSn)I/] =-1 a.s.

in the framework of Theorem 2.5, the condition (2.21) is optimal in a way.

EXAMPLE 4. Let Pn exp(en ]’ n 1, and 0 $ a < 1. Let Xn, nl

be a sequence of independent random variables with distributions

P(X
n

x) (1-a)/2p
n for x i’n,

a12 for x 1,

(1 a)(1 llPn) for x O, for each n > 1.

It is easy to see that EX 0 and EX 1 for all n > 1. Let
n n

H(x) SUPnI P(IXn[ x), x O.

We now have that
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and

fo (x/L:x) H(x) dx < m

ii EX(l/n)
=1 I(IXil > (iL i)t/) 1/n + ((n-1)/n)(1-a) - 1-a

as n -* x. Consequently,

and

limsuPn_ Sn//2n L2n a a.s.

liminfn_ Sn//2n L2n -a a.s.

From Examples 3 and 4, we know that the conditions in Theorem 2.5 are,

in some sense, not only optimal, but also the value of the limit supremum

2 I/2
/[s (2L2s) depends on the value of the limit ofof S

n n n

s2ii=l E(X2iI([Xi (iLi)t/2)).

The referee has pointed out the following. Theorem A, which plays a

crucial role in the establishment of Theorem 2.2, obtains for more general

sequences a nl satisfying only a /s T m But Theorem 2 2 was provedn’ n n

2 1/2
for the particular choice an Sn__(L2Sn) nl of weights. Can there be a

version of Theorem 2.2 for general sequences a
n nl?
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