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ABSTRACT. In this paper we have evaluated the integrals

and

x’- In x exp(-ax bx- )dx

jfo x’-:(ax b)(ln x) exp(-ax bx-’)dx

for all n 1,2,3,.... Some applications of the results are discussed and an open problem is posed.
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1. INTRODUCTION.

The integrals

and

x’-a In x exp(-ax bx-)dx, a>O,b. >0, (1)

fo x"-:(ax b)(ln x) exp(-ax bx-’)dx,

a > O, b > O, (n 1,2,3,....) (2)

arise in statistical inference theory when Frechet and other distributions are applied to solve impor-

tant problems related to ocean engineering technology, resource management, and weather phenom-

ena such as estimation and forecasting of wind velocity, flood, rainfall, etc. See [3] and [6,7,8].
The closed form solutions of the integrals (1) and (2) are not known for any n 1,2,3,.... Some

numerical techniques are used to evaluate these integrals [2,8]. We have evaluated these integrals (1)
and (2). Some special cases of the results are also discussed.
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2. LEMMA.

For n 0.1,2,3

PROOF. This follows from the Leil)nitz rule of differentiation and from the recursion form,las

[5, p 970].

3. TItEOREM.

’:x’- In exp(--ax-bx-1)dxX

a" j(n3--1

(a > 0, b > 0, n =0,1,2,3 ). (4)

PROOF. It is known that [5, p 31a]

j/oX-1 exp(--ax bx-1)dx 2(b/a)O/Ko(2-)
a>0, b>0. (5)

Performing formal differentiation with respect to the parameter c we obtain the equality

/aOx-’ In x exp(-ax- bx-’)dx 2(b/a)’/:

x -ln(b/a)K(2v/) + K(2)
The process of the formal differentiation is justified [4, pp. 427-448].

Using the integral representation [5, p. 358] for the Macdonald function K, we get

0
[K,(z)] e- ch(t)sinh(at)dtOa

which implies
0
y(z)]o-o o

Oa
Letting a 0 in (6) and using (8) we get

[ -lln x exp(-ax- bx-1)dx ln b/a Ko(2V/)
JO

(a > O, b > O).

(6)

(7)

(s)

(9)

We can rewrite (9) in the operational form as follows:

L { lnX exp(-bx-1); a} ln(b/a)I(2v/-)’ (o)

where L is the Laplace transform operator [1].
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By using the lemma and property [1]

d),L{x’f(z);a} (-a f(a) (n= 1,2,3,...)

of the Laplace transformation we get the result from (9) and (11).
COROLLARY 1. See [5, p. 577]

foexp(-t(x/c + c/xlllnXdxx 2(ln c) Ko(2/t),

(c > 0, > 0).

PROOF. This follows from (9) when we take a i/c and b =/c.

COROLLARY 2.

(11)

[ exp(3t 2a cosh 3t)dt 1/a32Ko(2a)
( >0, >0).

PROOF. This follows from (4) when we take n 1, b a and use the transformation x

cm, > 0.

COROLLARY 3. For all n 0, 1,2,3,... and a > 0, b > 0,

x"-2(ax b)(ln x) exp(-ax bx-1)dx

a= (ba)/21n(b/a)K(2)+n (ab)"-’)/2lQ-)]
,=, j(n j) ]

(12)

PROOF. This follows by applying integration by parts to the integral in (4).
In particular for n 0, a=g/c,b=gc, g>0, c > 0 in (12), we get

(ln x)

( > 0, c> 0).

We state here an open problem. The solution to the problem will he far-reaching consequences

in statistical inference theory. It should be noted that the solution to the problem is not known even

for n 2 and for any value of .
4. STATEMENT OF THE OPEN PROBLEM.

(a > 0, b > 0, n > 2).Evaluate (/n x)’x’-’ exp(-ax bx-’)dx
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