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ABSTRACT. We continue the investigation initiated by Mastroianni and Szabados on question
whether Jackson’s order of approximation can be attained by Lagrange interpolation for a wide
class of functions. Improving a recent result of Mastroianni and Szabados, we show that for a
subclass of C?! functions the local order of approximation given by Lagrange interpolation can be
much better (of at least O(2)) than Jackson’s order.
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1. INTRODUCTION.
Let X be an infinite triangular matrix of points with n-th row entry (Znn, Zn-1,n; .- 2, Z1,n)
satisfying
1< Ty < Tp-1n < < ZT2n<T1n <1, n=12,..

(we write z; for i, when there is no confusion), and let
wp(z) = wa(z, X) : H(z Zrn), n=1,2,...

For a function f defined on points contained in X, define

2 f(ze)wal(z)
La(f, X, z) = Z <t () = — 22)

then L,(f, X, z) is the unique Lagrange interpolation polynomial of f of degree n — 1.

It is well-known by Faber’s classical theorem that for any matrix X, there is a function
f € C[—1,1] such that L,(f, X, z) does not converge to f on [—1,1] as n — co. On the other hand,
by Jackson’s theorem (and its pointwise generalization given by Telyakowski and Gopengauz),
for any function f with f() € C[—1,1], there is a sequence of polynomials {p,}2, with p, € P,_;
(the set of polynomials of degree at most n — 1) such that

1—z2\" n V1—1z?

1@ - ma(a)l = 0l (2 wr, E=D), (n s o). 0
In (2], Mastroianni and Szabados initiated the investigation of the following problem.
PROBLEM. Find a reasonably wide class of functions and some matrices of interpolation

X such that the error of the corresponding Lagrange interpolation yields Jackson or possibly

Telyakowski-Gopengauz order of convergence.
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It is proved in [2] that if we use the matrix U formed by the extremal points of the Chebyshev
polynomials, i.e., Ty, = costy, ty = ty, 1= (k — )w/(n — 1), k =1,2,...,n, then

THEOREM 1. (]2, Theorem 1)) If f € C[~1,1] and there is a partition of [-1,1]: -1 =4, <
a,_1 < - < ap = 1 such that every f|j,,,, 4, is a polynomial (j = 0,1,...,s — 1), then, for |z| < 1,

Vv1-—z2 1 )

|f(z) — La(f, U, z)| = O( - )min(l,nmimsjs‘_llx_ajl), (n — 00).

As noted in [2], function f satisfying the condition stated in Theorem 1 is in Lipl. For such
function f, the order given by (1) is O(";E) Therefore, (2) can give the same order as in (1)
so yields an answer to the above problem. Further, the estimation in (2) shows that the order
of approximation by Lagrange interpolation can be improved (to O( %)) locally if we stay away
from the singularities a;’s.

Mastroianni and Szabados also show how the above phenomenon carries over to smoother
functions by proving the following result.

THEOREM 2. ({2, Theorem 2]) In addition to the assumption in Theorem 1, we assume
f' € C[-1,1]. Then, for |z]| <1,

V1—1z?

—5), (o o). ©

'f(z) - Ln(f’ Uaz)l = O(

Since function f in Theorem 2 satisfies f’' € Lip1, the order given by (1) for such f is 0(‘—;;,53)
So (3) does not macth (1) in the order of approximation. It is then natural to ask: Under the
same assumption as in Theorem 2, is it possible to get order O( ‘;;") instead of O(l/i—’,;’—) in (3) ?
We ask even further: For functions in Theorem 2, can the order of approximation by Lagrange
interpolation be improved locally as in Theorem 1 ?

The goal of this note is to answer these questions. We will improve the above results of
Mastroianni and Szabados. Preciesly, we will show that under the assumption in Theorem 2 we
can get order O(‘;,”) as well as better local estimation (as in Theorem 1 above). The paper is
organized as follows. In section 2, we state our main results. Then in sections 3-5, we give the
proofs.

2. MAIN RESULTS.

As suggested in [2], function |z| is a representative of the functions considered in Theorem 1.
The following result tells us that the local order of approximation O(-nl,-) in Theorem 1 is sharp
in general (when we stay away from the singularities).

PROPOSITION 3. We have

|| = La((t], U, 2) | = 22@IG 12D | o

nzlxl (n - °°)’

1
n3|z|z)’

where “O” is locally uniform for z € [-1,1]\{0}.

The proof of Proposition 3 is given in section 4.

We will consider classes of functions more general than those in Theorems 1 and 2. We call a
function piecewisely global analytic on [—1,1] with singularities {a,-}j;} if

-l1=:aq,<a,1 < <a1<ay:=1

and every f|,;,, ;) has an analytic continuation to [-1,1], ( = 0,1,...,s — 1).

THEOREM 4. Let f be piecewisely global analytic on [—1, 1] with singularities {a,}}Z}. Then
(i) if f € C[-1,1], we have (2);
(i) if f' € C[-1,1], we have

2 Visa

"ndminigjc,-1 |z — a4

|£(@) - Ln(f,U,2)| = O(1) min{—" 2 (@

as n — oo, where O is uniform in z € [-1, 1].
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The proof of Theorem 4 is given in section 5.
We will use the following notation for “trapesoidal” sum:

Ka 1 1
Z *hy = Ehkl +hg, 41+ + b1+ Ehkr (5)
k=K,
The following elementary result plays a crucial role in our proofs.
LEMMA 5. (i) If f” is monotone on [1,2m + 1], then
2m+1

> (=DM (R) = %[f’(Zm +1) - f(1)] + o(|f"(2m + 1) - f'(1)]), (m — o0).

k=1
(i) If | /™| is integrable on [1,2m + 1], then
2m+1

S 078 = Hpem+ 1) - r)+of ™ @1, (m - o)

k=1

It is easy to check Lemma 5. For reader’s convenience, a proof of it is provided in next section.

3. PROOF OF LEMMA 5.
For k = 1,2,...,m, using the mean value theorem for differrences of order 1 and 2, we can

write
3/ (2 = 1) = F(2k) + 37(2k + 1) = Z{F'(2k +1) - (2% - 1) ©
= 31ME) - {162 = 516 - '),

where &, ¢ € (2k — 1,2k +1).
(i) If f" is monotone, then from (6)

1572k =1) = £(2K) + (2K +1) = 3{f'(2k +1) - /(2% = 1) (7
21772k +1) - f'(2k ~ 1)].
Thus

2m+1

|2 W) - gl em 1) - ) (®)
= | }:{-f(zk —1) = J(2K) + 5S(2k +1) — Z1'(2k +1) - f'(2k — )]}

< SIZk=1) = f(2K) + 312k +1) — 22k +1) ~ £k - 1)

k_l
< SIf"@m+1) - ().

Here in the last inequality we used (7) and monotonicity of f. This completes the proof of (i) of

the lemma.
(ii) If | f"| is integrable, then from (6)

32k = 1) = F(2k) + 31(2k+ 1)~ {172k + 1) - P2k - 1] = 3 [ (et
with &, & € (2k - 1,2k + 1), so
1 1 1 1 2+l
|57k = 1) = J(2K) + 27k +1) - {1k + 1) - k-1l < 3 [ gja
Hence as in (8), we can get

|Z ) - 5l Em ) - N < 2 [ Il
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This completes our proof of Lemma 5
4. PROOF OF PROPOSITION 3.
It is known that [3, formula (1.98), p. 38|
_1)k
l) f(zk)w"(z)’ for any f,

Ln(f1 Uvz) = i '((n - 1)(I - Ik)

k=1

where 3°° has the same meaning as indicated in (5)
Assume z < 0; the proof for the case when z > 0 is similar. We have

(1th,U,2) | = | = = = La(|t], U, 2)|

Ru(z) = |l|z]-
= | = Ln(t,U,z) = Ln(|t], U, z)| = |Ln(t + ||, U, z)|
[wa(2)] | (1) (2 + |za])
n—1 k=1 T — I
_ 2|wa(x) 3] (—1)*z;
- n—1 :L; (14 b)) (ze — z) |

Define ®(y) := cosy/(cosy — z) and ¢(t) := &(n(t — 1)/(n — 1)), then

_ 2un()] [$L (1)*19(k)
R.(z) =
n—1 k=1 1+ 6y
Denote n' := [2]. We now estimate the summation
. (—l)"l+l¢(nl).

n' k+l¢( ) 1
v 8 S - e s +
According to whether n' is even or odd, we can write
1
Sn={5¢(1) = 4(2) +--- + J8(n' — 1)} + ¢(n - 1) - ¢(n')
or 1 1 1
Sp = {§¢(1) - ¢(2) +oee §¢(nl)} + §¢(nl)’
respectively. Let us first consider the case when n' is even. Note that
zsiny[(z? — 5) + 4z cosy — sin® y] s
d(y) = - 0 0,-),
(v) (cosy —2)t <0, for ye( 2)

so ¢" is decreasing on [1,n' — 1]. Thus, by Lemma 5 (i),
(10)

1
=S¢ =1) = ¢'(1)] + O(I¢"(»' — 1) - ¢"(1)))
1
+5¢(n' —1) - ¢(n').
Now we pause our proof to state the following lemma which can be checked by straightforward

computation and hence the proof is omitted.
LEMMA 6. Denote d := 2 —n'. We have (i)

s =) =" o), (o)
and p
¢(n’) - 7"(_3 — ) + O(nzilzlz)’ (n — oo)
(i) ¢'(1)=0and
¢(n'—1)= + (n2| Iz), (n — o0).
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(iii)
wmn=m;ﬁﬂ,m~wy

Here all the O’s are locally uniform for z € [—1,1]\{0}.
We now continue our proof. With Lemma 6, (10) gives us

wd 1

Sn= 2% 4 O(—r
" omz T (nzlxlz)’

(n — o00). (11)

Similarly, we can show that (11) is true when n' is odd. This completes our proof.
5. PROOF OF THEOREM 4.

We prove only (ii); the proof of (i) is simpler and requires minor modifications of that given
in [2]. These modifications are also contained in the following proof of (ii). Some ideas of our
proof are borrowed from [2].

Let pi(z) bs analytic on [—1,1] and f|(a,,,.0.}(2) = pi(2) on [aiy1,a] =: L, £ =0,1,...,8 — 1.
For z € [—1,1] (fixed), there is a j(z) =: j such that z € I;. Then

R,.(.‘B) = If(z) - Ln(fv U,.‘l:)l = IP,’(:C) - Ln(f’ U1 l)l
= |pj(z) — La(p;, U, z) + L.(p; - f,U,z)|.

It is known that (cf., e.g., [1,Theorem 2, p. 66]) for a function g analytic on [—1,1],
lg(z) — La(g,U,z)| = O(B%), for some p, > 1.
9
So for some p := p, > 1,
Ra(a) = o228y 4 1, g, - 1,0,2).

It has already been shown (with minor modification for p; being analytic instead of a polynomial
function) in the proof of Theorem 2 in [2] that

La(p; - ,0,) = o223, (12)
W
e now prove Ly ,0,2) = O |wn(z)]| ) (13)
Pl ndminigjc,-1 |z ~ a4

Define

._ Pilcosy) — f(cosy)
o(y) = z—cosy

and ¢(t) := ®((t — 1)x/(n — 1)). Then, using (9),

|"’n(3)|
-1

(=1)*¢(k)
(& mgl}) 1+ 6k + bin

(=1)*¢(k)
(2 + 2 ) rsranl

z<ajy;  zTEDa;

|Ln(PJ LU, z)l (14)

Iwn(z)l

The two sums can be estimated similarly. Let us consider 2“”,,. Let u satisfy z,4, < a; < z,,,
then, as in [2],

)kt 2[u/2)-1 "
sg ( i)+ Jz(k) — tz-:l c(_l)k+l¢(k) + u_¢( ) (15)
+3( 1) ¢(u—1)+( 1)#*1¢(u).
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For n large enough, z,_5, 7,1, z, € I,_; and

(p, = py-1)(zm) — (p, = p,-1)(a,) = (P} = P}_1)(a;)(Zm — @)
(@~ 2) + (2 —0)) (1€)

$(m) =

by the fact that f' € C[-1,1] (so p,(a,) = p,-1(a,), and p)(a,) = p}_,(a,)), where m = pu -2,
© — 1, u. Then the Taylor theorem implies

o) = O EalBlzn i), ()
" a1 [PA(2) = s (2)l(Em = 0)' _  (2m — 4,)?
#lml < 2(a; - 2) M
But (zm — ¢,)? < (2441 — Zu-2)* = O(3;), hence
[#0m) = Ol =g (= o) (18)

for m = u — 2,4 — 1,u. Next, we estimate 3°* in (15). Note that when n is large enough,
ZTai—1,Zak, Zok+1 Will be contained in at most two I;’s. So, for large n, we can write

afu/2)-1
"(-1)*¢(k) (19)

k=1

= §( >+ > )l%¢(2k —1) - ¢(2k) + %d:(zk +1)].

$=0 Zgp_3,Z2k4+1€L  Zk41<8,<Z2k—)

Step I: Estimation of 3, , | <a,<z,,_, (When it is not an empty sum).
The sum contains only one term, i.e.,

Y [B4(2k-1) - 4(2k) + %¢(2k +1)] = %¢(2k ~ 1) ~ §(2k) + B2k +1).

Zak4+1<6i<Z2k-1

Assume a; < ;. (The case when z3; < g; can be handled similarly.) Then

%45(21: —1) - $(2k) + %¢(zk +1) (20)
_ Pj($2k~1) - P.'~1(f€zh-l) _ Pj(-'ﬁzk) - Pe—l(zzk) Pj(xzkn) — P-‘(-'Dzk+1)
2(zoe-1 — ) Ty — T 2(z3k41 — )

_ [ Pj(T2x-1) _ P;(Tax) + P;(Z2k+1)
2(zak-1—Z) Tae—2z  2(Tae4r — T)
Pi—l(-'tzk-l) Pi—l(xzk) pi—l(sz-H.) Pi—l(-’b‘zkﬂ) - P-'(hku)
- - + +
2(z3k-1—2) zTu—z  2(Taw+1 —7) 2(z2k+1 — )
=: Tl - Tz + Ts.

To estimate T}, we use the mean value theorem to get

L)

L Loy (2)

dy*'y—=z

T3] = O(

Zok+1SYSTak-1

We may assume |z — @;| < (@, — a;4;)/2 by assuming n is large enough. So, for z3;,4; <y <

T2k-1,
a; — a;
v — 2| > |Z2k41 — Gigr] = ——E‘Ll,
where the first inequality depends on the fact that £ < a; < @;1;. Thus (21) implies T} = 0(5)
Similarly, we can show T; = O(;;). On the other hand, proceeding as in (16) and (17), we can
get
PRY
Ty = O( ($2k+1 0-.) .
|$2k+1 - $|
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Note that (z2e41 — @,)? < (Tae+1 — T2k)? = O(;‘;) and |Zax41 — z| > (i — @i41)/2 (for n large
enough), it then follows that Ts = O(%;).
Using the above estimation on Tj, T; and T3 in (20), we obtain

2 {%¢(2k —1) - ¢(2k) + %¢(2k +1)] = 0(%).

ZTak+1<6,<ZT2k-)

Step II: Estimation of 2‘_0 ) D
Let /; and m; be odd integers satisfying

Tm+2 < Q41 < Tm,y Ty, < a4 < Tl 1-29 for 1= o0, l,-"sj -2,

lo:=1and mj_; :=2[p/2] — 1. Then m; > ; > m,_, and

2 [%45(2" —1) — ¢(2k) + ¢(2k +1)] = Z (~1)+h (k).

Zak+1,Z2k-1€]L k=1,

Applying Lemma 5 (ii), we have
3 (~1Mg(k) = {160m) - $0) +O([ 18" (0)lde).
k=1, 3

So

S X er-1- s+ ek (22)

$=0 Z3k 41,221 €I,

= JWEEI- 0 - S+ T8 - )+ o[ e

We first note that ¢'(1) = 0 and with z* := cos H}s.l:z_ll-_?,r

2B 1) = " [Pile) = pi-a(2”) () — g (=7)] 2[“] 2
@ (2[ ]-1) 1 [ (= —2) (z* - z) -1
HLA (E) P (§)](z" —a)*  [pj(s) — pj_a(9)l(=* — a))
O(n) { (z* —z)? (z* - z) }
where ¢, ¢ € (aj,z*). Then, as n — oo,
1or¥y _ 1|z a,| 1|z -"’u+l| - 1
wegl- =0 ==t~ om0t (23)

since z* — z,41 = O(1). Next, note that for i = 0,1,...,5 — 2, |[m; — li1| = O(1). Together with
maxigict,, |4"(t)] = O(%), we get

S1(m) ~ #(han)] = O(5),  (n - o0) (24

=0

Finally, using the fact that (from f' € C[-1,1])

t—1
pifcos L)~y s(eos L) = O(fcos L2 r - )
and
t—1 -1
p;(cos 1r) - p;-_l(cos 1r) = x — aj),
together with |cos =7 — z| > |cos FEim —aj| for t € [1,p), it is stralghtforward to get
$"(t) = O(—s—mr—),  te Ll
n3(cos =iw — z)?
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Note that (cf. [2]) there exists a ¢; > 0 such that ¢jn < p < n, so it is possible to find a number
¢ > 0 such that cos i=tn — z > cos i=4n — z, + 0, — 2 > ¢! + (g, — z). Then

1 n-1
2{u/2]-1 1 2[u/2]-1 1 n
———d / dt < .
/1 (cosi=tm —2)2 ~ /i (ctt +a,-1)2 ~ c|z—a,
Therefore,
[ i = o) ) (29
= —_— — .
1 n?|z —a,|”’ (n— o0

Using (23-25) in (22) we obtain

1

m), (n d 00)

S5 ek 1) -6k + 2e(zk+ 1)) = 0

§=0 Z3k 41,2261 €L,
Combining estimations obtained in Steps I and II and using (19) we have

2(p/2]-1 1

> (=1)e(k) = Of

), (n — o0). (26
k=1 all

n?|z —
Obviously, (13) follows from (14) and (26).
Finally, we establish (4) by using (12) and (13).
Since w,(z) = sinfsin(n — 1) (with z = cosb), |w,(z)] < V1 —2z2 So (12) and (13)
immediately gives us

V1—z? 1

[f(z) = La(f,U,z)| = O( n? )min(1, nminicjc,—1 |z — ail)’

(n — o0). (27)

It remains to verify
1-2%

If(z) - Ln(f’ U)z)l = O( n?

Let 6 := 2 'min(a,_; + 1,1 — ;). If z € [-1+ 6,1 — 6], then /1 — 27 = O(1 — z?), so (27) yields
(28). Hz & [-1+6,1— 6], then |z —a;| > 6, i =1,2,...,s — 1. So (13) gives us

), (n — oo) (28)

1/(2) ~ Lu(£,0,2)| = o525l = 001y © o),
for z = cosf & [~1 + 6,1 — §]. Using inequality |(sin(n — 1)8)/sin8| < (n — 1), it then follows

.1 2
sin® @ 1-z
) =0

|f(1') - Ln(faU’z)l = O(

) (n— o)

for z & [~1+ 6,1 — §]. So (28) holds for all z € [-1,1]. This completes our proof.
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