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ABSTRACT. We continue the investigation initiated by Mastroianni and Szabados on question
whether Jackson’s order of approximation can be attained by Lagrange interpolation for a wide

class of functions. Improving a recent result of Mastroianni and Szabados, we show that for a

subclass of C functions the local order of approximation given by Lagrange interpolation can be
much better (of at least O()) than Jackson’s order.
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1. INTRODUCTION.
Let X be an infinite triangular matrix of points with n-th row entry

satisfying
-I <_ x,,., < ;T,n_l, < < T,2, < X,I, < I, n I, 2,

(we write x for x,, when there is no confusion), and let

k=l

n 1, 2,

For a function f defined on points contained in X, define

L.(f,X,x) fCx,)w.Cx)

then L,,(f,X,x) is the unique Lagrange interpolation polynomial of f of degree n- 1.

It is well-known by Faber’s classical theorem that for any matrix X, there is a function
]" E C[-1,1] such that L,.,(.f,X,x) does not converge to f on [-1,1] as n oo. On the other hand,
by Jackson’s theorem (and its pointwise generalization given by Telyakowski and Gopengauz),
for any function ]" with f(’} E el-l, 1], there is a sequence of polynomials {p.},,oo__l with

(the set of polynomials of degree at most n- 1) such that

If(x) p.(x)l- o[ wCf(’), vii x’
)], (n - oo). (1)

In [2], Mastroianni and Szabados initiated the investigation of the following problem.
PROBLEM. Find a reasonably wide class of functions and some matrices of interpolation

X such that the error of the corresponding Lagrange interpolation yields Jackson or possibly
Telyakowski-Gopengauz order of convergence.



210 X. LI

It is proved in [2] that if we use the matrix U formed by the extremal points of the Chebyshev
polynomials, i.e., x, cost, t t, := (k 1)/(n- 1), k 1,2,...,n, then

THEOREM I. {[2, Theorem 1]) If f E C[-1,1] and there is a partition of [-1,1]: -1 a, <
a0-1 < < a0 1 such that every fl[a,+i.=,] is a polynomial {j 0,1, s- 1), then, for ]x _< 1,

If(x) Lr,(f,U,x)l-- O(V’1 x2
n

min(1,
1

n min:n._<._<,-:v. I "-.,,I )’ ( oo). (:)

As noted in [2], function f satisfying the condition stated in Theorem 1 is in Lipl. For such
function f, the order given by (1) is O(). Therefore, (2) can give the same order as in (1)
so yields an answer to the above problem. Further, the estimation in (2) shows that the order
of approximation by Lagrange interpolation can be improved (to O()) locally if we stay away

from the singularities a#’s.
Mastroianni and Szabados also show how the above phenomenon carries over to smoother

functions by proving the following result.
THEOREM 2. ([2, Theorem 2]) In addition to the assumption in Theorem 1, we assume

f’ E el-l, 1]. Then, for [x{ <_ 1,

If(x)- L,C.f,u,x)l o( , ), ( .--, ).

Since function f in Theorem 2 satisfies f’ e Lipl, the order given by (1) for such f is O(1-z2
So {3) does not macth (1) in the order of approximation. It is then natural to ask: Under the
same assumption as in Theorem 2, is it possible to get order O( I-=2 instead of O( in (3) v

We ask even further: For functions in Theorem 2, can the order of approximation by Lagrange
interpolation be improved locally as in Theorem 1 ?

The goal of this note is to answer these questions. We will improve the above results of
Mastroianni and Szabados. Preciesly, we will show that under the assumption in Theorem 2 we
can get order 0(1-----} as well as better local estimation (as in Theorem 1 above}. The paper is

organized as follows. In section 2, we state our main results. Then in sections 3-5, we give the
proofs.
2. MAIN RESULTS.

As suggested in [2], function Ix[ is a representative of the functions considered in Theorem 1.

The following result tells us that the local order of approximation O() in Theorem 1 is sharp
in general (when we stay away from the singularities).

PROPOSITION 3. We have

I11-L.CII,U,)I= I,.,’.(,)1(- 1]) 1

-11 + ( ,:1,i’
)’ (" ’:":’)’

where "O" is locally uniform for z e [-1,11\{0}.
The proof of Proposition 3 is given in section 4.
We will consider classes of functions more general than those in Theorems 1 and 2. We call a

function piecewisely global analytic on [-1,1] with singularities {a -}1=I if

-1--:a < a-i < < al < ao := 1

and every fl[=;+,,=-] has an analytic continuation to [-1,1], (j 0,1, s 1).
THEOREM 4. Let f be piecewisely global analytic on [-1,1] with singularities {a# o-1}=1" Then

(i) if f e C[-1,1], we have (2);
(ii) if ff C[-1,1], we have

If(x)- L,(f,U,x)[- 0(1) min{

as n -, oo, where O is uniform in x E [-1,1].

1 x V/1 x
n ’naminl_<i_<o-i I ,.,,I }’ (4)



JACKSON’S ORDER OF APPROXIMATION 211

The proof of Theorem 4 is given in section 5.

We will use the following notation for "trapesoidal" sum:

g= 1 1
h -hK, + hK,+l +... + hg,- + -h,.

The followhg elementary result plays a crucial role in our proofs.
LEMMA 5. (i) If f’ is monotone on [1,2m + 1], then

’+ 1(-l)+f(k) [f’(2 + I) f’(1)] + OClf"(2m + 1) f’(1)[), (m ).
=I

(ii) If If’l egble o [1,2 + 1], hen
2m+l m+l

(s)

It is easy to check Lemma 5. For reader’s convenience, a proof of it is provided in next section.
3. PROOF OF LEMMA 5.

For k 1,2, m, using the mean value theorem for differrences of order 1 and 2, we can

write

1 1 1
f(2k 1) f(2k) + fC2k + 1)- [f’(2k + 1) f’(2k- 1)1 (6)
1 _. 1 91_./() if,,(f) _[/"()_/,,()1,

where {k, fk E (2k- I, 2k + 1).
(i) If f" is monotone, then from (6)

lf(2k- 1)- f(2k)+ f(2k + 1) [f’(2k + 1) f’C2k- 1)I (7)
1< lf"(2k + 1)- f"(2k- l)l.

Thus
2nt+l

1)+ 41__(- f(k) [f’(2m + I) f’(1)] (8)
k=l

Y{f1 (2k 1) f(2k)-I- f(2k + 1) [f’(2k + 1) f’(2k- )])I
k=l

=1

1
f,(< -If"(2 + 1)- 1)I.

2

Here in the lt inequaliW we used (7) and monotoniciW of f". This completes the prf of (i) of
the lena.

(ii) If"l i integme, then fo (6)

 lf’c2 + 1)- f’C2k- 1)] f"/(22 1)- f(2k) + f(2 + 1)- (t)dt,

with , f (2k- 1,2k + 1), so

1 l[f’(2k + I)- f’(2k- I)] <
t-x

lf"(t)Idt"lf(2- ) f(2k) + f(2k + I)-

Hence in (8), we can get

I,m+l

l[f’(2m + 1) f’(1)][ S
I

(-1)t+lf(k)- ] [f"(t)[dt.
k=
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This completes our proof of Lemma 5.

4. PROOF OF PROPOSITION 3.

It is known that [3, formula (1.98), p. 38]

L,(f,U,x) 1 (n--1)(x--xk)
for any ]’,

where * has the same meaning as indicated in (5).
Assume x < 0; the proof for the case when x > 0 is similar. We have

Denote n’ [1. We now estimate the summation

S, (-1)k+l(k) 1

k=l 1 -- kl (1) (2) +...

According to whether n is even or odd, we can write

1 1s { ()- (2)+... + (,’-
or

s { ,()- ,()+... + (,’)t + (,’),

respectively. Let us first consider the case when n is even. Note that

< 0, for y e (0, ),(Y) xsiny[(x2
(cosy- x)

so " is decreasing on [1,n’ 1]. Thus, by Lemma 5 (i),
1

S. [’(n’- 1) (1)] + o(l"(n’- 1) "(1)1) (10)

+Cn’- 1)

Now we pause our proof to state the following lemma which can be checked by straightforward
computation and hence the proof is omitted.
LEMMA 6. Denote d" We have

d) 1
(’- i} (- + o(

and

(ii) ’(1) 0 and

(.’) (- + o( )

+0 ),
X 2;12
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(iii)
I"(t)l o(.,1=1), (--

H th 0’ o,y .niform fo. e I-, l\{O}.
We now continue our proof. With Lemma 6, (10) gives us

rd 1s. + (-"=1’)’1 (" oo). (1)

Similarly, we can show that (11) is true when n’ is odd. This completes our proof.
5. PROOF OF THEOREM 4.

We prove only (ii); the proof of (i) is simpler and requires minor modifications of that given
in [2]. These modifications are also contained in the following proof of (ii). Some ideas of our

proof are borrowed from [2].
Let p(z) bs analytic on [-1,1] and fl[a,+l,a,](Z) p(z) on [a+x,a] =: I, 0,1,...,8- 1.

For x 6 [-1,1] (fixed), there is a j(x) =: ] such that x 6 Ij. Then

R.(x) := If(x)- L.(f,U,x)I IP(=)- L.(f,U,x)I
I(=)- L.(p,U,z)+ L.(, -/,U,=)I.

It is known that (cf., e.g., [1,Theorem 2, p. 66]) for a function 9 analytic on [-1, I],

I() (,,)l- I()l
for some P0 > 1.o(

’
),

So for some p pp, > 1,

It has already been shown (with minor modification for p being analytic instead of a polynomial
function) in the proof of Theorem 2 in [2] that

We now prove

Define

(l
L.(pj f,U,:r.) O(’w"’z’’)

2

I.(=)1 ).L.(p f,U,x) O(n, min,<<o_ I=-1

(y) ,(o, y) -/(o y)
z cos y

and (t):= ((t- l)r/(n- 1)). Then, using (9),

(_l)(k)IL.(p f, G=)I I’-(=)1
n- 1 {." ,xi} 1 + 6, + 6.

I"(=)1 + :) (-1)A()
n-1 I+6,+6.

(12)

(13)

(14)

The two sums can be estimated similarly Let us consider

then, as in [2],
Let/ satisfy x+, _<

1 + (-1)"+*6(- 2) (15)
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For n large enough, x.-2, x_, x E I_ and

(m)
(p’ ’-’)() (p’ P’-’)(’) (p; P"-’)()("

(aj ) + (zm a,)
(16)

by the fact that f’ C[-1,1] (so p,(a,) p,-a(a,), and p,(a,) p,_(a,)), where m - 2,- 1, . Then the Taylor theorem implies

(m) i[P () p_,()J(x

SO

I(m) _< mx=et-,,xl Ig’Cz)2(,- -;’-’ ()(-) ,)*
o( (1 ,1-’)* )

But (x,- a,) (x+- x_,) O(), hence

1
I(m)l O(nlx_ ajl) (n ), (18)

for m p- 2,p- 1,p. Next, we estimate * in (15). Note that when n is lge enough,
x**_x, x**, x**+ will be contained in at most two Ii’s. So, for large n, we can write

[./]-a

*(-1)+(k) (19)
k=l

-1
( + 1)].

:0 12k_l2k+ll 12k+l(,(12k-I

Step I: Estimation of +<,<=_, (when it is not an empty sum).
The sum contains only one term, i.e.,

1 1(k + 1)]
1 l(zk + )[(- 1) -()+ (- 1)- () +

Z2kWl (ai<Z2k-

Assume ai x. (The ce when x < can be handled similly.) Then

(b + 1) (z0)(k- 1)- (k) +

p,-(*,,-,) ,-,(*,,) ,-,(*,,+,) ,-,(*,,+,)_+ +
T- T + Ts.

To estimate Tx, we use the mean value theorem to get

d P’(Y) (21)ITI 0() =,.+,_<._<,,._,max y(y_ x

We may assume Ix2,+, -ail < (a, a+,)/2 by assuming n is large enough. So, for x,k+, _< y _<
2k-

lu 1 > I=,+, +, >
2

where the first inequality depends on the fact that < a < a+]. Thus (21) implies T O().
Similarly, . how r, OCb). O th oth hd, oaig in (16) a (17), w
ge

I,+- 1 )"
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Note that Cz,/l- )2 Cx2+1_ x) O() and I=+,- 1 - C,- +,)/ for n large
no), i ronow r ().

Using the above estimation on T1, T and Ts in (20), we obtain

1(2- ) -()+ (z + )] o( ).

Step II: Estimation of ./-Is=O Ez2/+| ,z2k-lE/,

Let li and rni be odd integers satisfying

z,n,+2 < a,+l _< zm,, zl,+ _< a,+z < xt,+-2, for O, 1, ...,j- 2,

l0 := 1 and rn./_ 2[/2]- 1. Then m, > li

_
rn,_ and

1
[( ) () + ( + )] ’(-)+"().

Applying Lemma 5 (ii), we have

So

./-1

/=0 z/+t ,z-tI,

11,(21# 1 -’
]- 1) ’(1)] + [’(m,) ’(/,+)] + I"(t)ldt).

i=0

1/1-We first note that (1) 0 and with x* := cos ._
u * [p(-’) p-,(-’) p;(’) p;-(")] z[#l-’([]- ) j

,in

o(ll i[() -(01(" ,)’
(.- l, (. l

where , f (, ’). Then, n ,. 1 I=* -1 o()I=" =+1 o(
1

[’(2[]- 1)[ 0()[z*- z[ [i z[ [i z[ )’ (2])

./-2

-[b’Crn,) b’(//+l)] O(-i), (n oo). (24)
/=0

Finally, using the fact that (from f’ C[-1,1])

and

t-1
p./(cos

t- lr p./_(cos
t- lr O(Ico-

n-1 n-1 n-1
r -ai[=

p(cos
t-1 t-1 t-1

) _’(co =) 0(I co. ’I),
n-1 n-1 n-1- r zl > cos ’- rtogether with cos al for [1, ], it is straightforward to get

1’(t) O(n(cos ’-’r ),), e [1,1.
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Note that (cf. [2]) there exists a cl > 0 such that cln <_ # <_ n, so it is possible to find a number
t-1 t-1c>0suchthatcos -x_>cosh-_r-x,+a,-x_>c,-+(a,-x). Then

Therefore,

z[/2l-1 1 f[/2]- 1 n

{cos t- r
dt < dt <_

x) (c + a x) c]x- %]

)ldt O(nlx al },

Using (23-25)in (22)we obtain

(2k 1) (2k) + (2k + 1)1 O(n, lz_ a.l), (n ).

Combining estimations obtained in Steps and II and using (19) we have

2t,,/21- 1’(-1)+(k) o(,,1 ,1 ), (, o).
k=l

Obviously, (13) follows from (14) and (26).
Finally, we establish (4) by using (12) and (13).
Since w,(x) sinOsin(n- 1)0 (with x cosO), ]w,,(x)[ < v/1- x. So (12) and (13)

immediately gives us

If(x) Ln(f, U,x)I O(
V/1 x2 1

n min(X ---, (27)’nminl<iSo_, Ix all )’ (n oo)

It remains to very
If(x) L.(f,U,x)l 0(

1 x2., ), (). (8)

Let 5 := 2- min(a,_ + 1, I- a). If z [-1 + 6,1-8], then 1 z’ O(1- z’), so (27) yields

(28). If z [-1 + ,1 -5], then ]z- 5, i= 1,2,...,s- 1. So (13) gives us

1)al), ( ),If()-L(Y,,)l=o(

for z cos8 [-1 + 5,1-5]. Using inequaliW l(sin(n- 1)a)/sinal (-), it then follows

I() L(f, v,)l o(’a) o( ’, , ), ( )

fo [- + ,1 ]. So (s) hoa fo [-, ]. Thioto poof.
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