ON SOME REGULAR AND SINGULAR PROBLEMS OF BIRKHOFF INTERPOLATION

N. JHUNJHUNWALA and J. PRASAD

Department of Mathematics California State University Los Angeles, CA 90032

(Received September 4, 1992)

ABSTRACT. Here we investigate the pure $(0, 1, \dots, r-2, r)$ -interpolation problem on the zeros of $(1-x^2) P_n^{(\alpha)}(x) = (1-x^2) P_n^{(\alpha,\alpha)}(x)$, $\alpha > -1$, where $P_n^{(\alpha,\alpha)}(x)$ is the Jacobi polynomial of degree n with $\beta = \alpha$.

KEY WORDS AND PHRASES. Zeros, interpolation, incidence matrix, regular, singular. 1991 AMS SUBJECT CLASSIFICATION CODE. 41A25.

1. INTRODUCTION.

Let k and l be natural numbers and let $E = E_{\ell}^{k} = (\epsilon_{ij})$ $(i = 1, 2, \dots, k; j = 0, 1, \dots, l-1)$ be a matrix with k rows and l $(l \ge k)$ columns having $\epsilon_{ij} = 0$ or 1, which are such that $\sum_{i,j} \epsilon_{ij} = 1$ and no row is entirely composed of zeros. Let

$$x_1 < x_2 < \dots < x_k \tag{1.1}$$

be increasing reals and $e_i^k = \{(i, j): \epsilon_{ij} = 1\}$. The reals x_i and the incidence matrix E describe the interpolation problem

$$P^{(j)}(\boldsymbol{x}_{i}) = y_{i}^{(j)}, \text{ for } (i,j) \in e_{\ell}^{k}$$

$$(1.2)$$

where $y_i^{(j)}$ are prescribed and the problem is to find the polynomial P(x) of degree $\leq l-1$, which satisfies the condition (1.2). If $y_i^{(j)} = 0$ for $(i, j) \in e_{\ell}^k$ then the problem (1.2) is the homogeneous interpolation problem. Let $X = \{x_i\}_1^k$ be the interpolation nodes. We say that (E, X) is regular if (1.2) has a unique solution for all choices of reals $y_i^{(j)}$, and singular otherwise. If $P^{(j)}(x_i) = 0$ for $(i, j) \in e_{\ell}^k$, then P(x) is said to be annihilated by (E, X).

Turán and his associate [4] considered $E = E_{2n}^n$ with x_1, x_2, \dots, x_n as the zeros of $\pi_n(x) = (1 - x^2)P'_{n-1}(x)$, where $P_n(x)$ is the Legendre polynomial of degree *n* with normalization $P_n(1) = 1$. Turán proved that (E, X) is regular if *n* is even and singular if *n* is odd. Later, Varma ([5], [6]); Anderson and Prasad [1]; and Prasad and Anderson [3] considered different incidence matrices. Recently, Bajpai and Saxena [2] proved the following:

THEOREM A. If *E* is the matrix of order $(n+2) \times (m+1)(n+2)$, $m \ge 2$, with rows $(\underbrace{1 \ 1 \ \cdots \ 1}_{m} 0 \ 1 \ 0 \ \cdots \ 0)$ and *X* is the set of zeros of $(1-x^2)P_n(x)$, $P_n(x)$ being the Legendre m

polynomial of degree n, then:

(i) if m is even, (E, X) is singular, and

(ii) if m is odd, (E, X) is regular if n is even and singular if n is odd.

Let X be the set of the zeros $\{x_k\}_0^{n+1}$ of $(1-x^2) P_n^{(\alpha)}(x) = (1-x^2) P_n^{(\alpha,\alpha)}(x)$, $\alpha > -1$, where $P_n^{(\alpha,\alpha)}(x)$ is the Jacobi polynomial of degree n with $\beta = \alpha$, such that

$$-1 = x_{n+1} < x_n < \cdots < x_1 < x_0 = 1.$$

Our aim here is to prove the following:

THEOREM 1. Let X be the set of the zeros of $(1-x^2)P_n^{(\alpha)}(x), \alpha > -1$, and E be the incidence matrix given by

where $(1)_m$ means m entries of 1 in that row. Let m be an odd positive integer ≥ 3 , and $-1 < \alpha < 1$, then:

(i) if n is odd then (E, X) is singular.

(ii) if n is even, $\alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an odd positive integer then (E, X) is singular and for all other values of $m-1-\alpha(m+2)$, (E, X) is regular.

(iii) if n is even and $\alpha = \frac{m-2}{m+2}$, then (E, X) is singular.

THEOREM 2. Let X be the set of the zeros of $(1-x^2)P_n^{(\alpha)}(x), \alpha > -1$, and E be the incidence matrix given by (1.1). Let m be an even positive integer ≥ 2 , and $-1 < \alpha < 1$, then:

(i) If n is odd then (E, X) is singular.

(ii) If n is even and $\alpha = \frac{m-2}{m+2}, (0 \le \alpha < 1)$, then (E, X) is singular.

(iii) If n is even and $\alpha \neq \frac{m-2}{m+2}$, then (E, X) is singular if $m-1-\alpha(m+2)$ is an odd positive integer and regular otherwise.

2. SOME LEMMAS.

Here we state and prove a few lemmas.

LEMMA 1. If $w_n(x) = P_n^{(\alpha)}(x)$, $\alpha > -1$, $\lambda_r(x) = [(1-x^2)w_n^2(x)]^r$, $r = 1, 2, \cdots$ and $\{x_k\}_1^n$ are the zeros of $w_n(x)$ then:

$$\left[w_n^{2r}\left(x\right)\right]_{x=x_k}^{(2r)} = (2r)! \left[w_n'\left(x_k\right)\right]^{2r}$$
(2.1)

$$\begin{bmatrix} w_n^{2r} (x)_{k^r = x_k}^{\sqrt{2r+1}} = 2r (2r+1)! (\alpha+1) x_k (1-x_k^2)^{-1} [w_n' (x_k)]^{2r} \\ = 2r (2r+1) x_k (\alpha+1) (1-x_k^2)^{-1} [w_n^{2r} (x)]_{x=x_k}^{(2r)} \end{bmatrix}$$
(2.2)

$$\lambda_{r}^{(i)}(x_k) = \begin{cases} 0, \ i = 0, \ 1, \cdots, \ 2r - 1\\ (1 - x_k^2)^r \ (2r) \ ! \ [w_n'(x_k)]^{2r}, \ i = 2r, \end{cases}$$
(2.3)

$$\lambda_{r}^{(2r+1)}(x_{k}) = 2r (2r+1) ! \alpha x_{k} (1-x_{k}^{2})^{r-1} [w_{n}'(x_{k})]^{2r}$$

$$= 2r(2r+1)\alpha x_{k} (1-x_{k}^{2})^{-1} \lambda_{r}^{(2r)}(x_{k}).$$
(2.4)

The proof is obvious.

LEMMA 2. Let $\delta_{2r}(x) = (1 - x^2)^{2r} = (x^2 - 1)^{2r}$, $r = 1, 2, \cdots$. Then: $(0, i = 0, 1, \cdots, 2r - 1)$

$$\delta_{2r}^{(i)}(\pm 1) = \begin{cases} 0, \ i = 0, \ 1, \cdots, \ 2r - 1\\ (2r) \ ! \ 2^{2r}, \ i = 2r \end{cases}$$
(2.5)

$$\delta_{2r}^{(2r+1)}(1) = 2^{2r}(2r+1)! r = -\delta_{2r}^{(2r+1)}(-1)$$
(2.6)

$$\delta_{2r}^{(2r+1)}(1) = r (2r+1) \delta_{2r}^{(2r)}(1)$$
(2.7)

and

$$\delta_{2r}^{(2r+1)}(-1) = -r (2r+1) \delta_{2r}^{(2r)}(-1).$$
(2.8)

The proof is obvious.

LEMMA 3. Let $F_n(x) = [(1-x^2)w_n(x)]^m q_{n+1}(x)$ be a polynomial of degree $\leq (n+2)(m+1)-1$, where $q_{n+1}(x)$ is a polynomial of degree $\leq n+1$, and let

$$F_n^{(m+1)}(x_k) = 0, k = 0, 1, 2, \cdots, n+1$$

Then, $q_{n+1}(x)$ satisfies the following conditions:

$$(1-x_k^2) q'_{n+1}(x_k) + m(\alpha-1) x_k q_{n+1}(x_k) = 0, \ k = 1, \ 2, \cdots, n; \ \alpha > -1,$$
(2.9)

$$2q'_{n+1}(1) + m\left[\frac{n(n+2\alpha+1)}{1+\alpha} + 1\right]q_{n+1}(1) = 0,$$
(2.10)

$$2q'_{n+1}(-1) - m\left[\frac{n(n+2\alpha+1)}{1+\alpha} + 1\right]q_{n+1}(-1) = 0.$$
(2.11)

PROOF. Let m = 2r. Then

$$F_n(x) = \lambda_r(x) \Big[(1-x^2)^r q_{n+1}(x) \Big]$$

On using Leibnitz's formula and Lemma 1 one can easily see that for $k = 1, 2, \dots, n$,

$$F_{n}^{(2r+1)}(x_{k}) = (2r+1) \lambda_{r}^{(2r)}(x_{k}) (1-x_{k}^{2})^{r-1} \left[(1-x_{k}^{2}) q_{n+1}'(x_{k}) + 2rx_{k}(\alpha-1)q_{n+1}'(x_{k}) \right]$$
(2.12)

To evaluate $F_n^{(2r+1)}(\pm 1)$ we proceed as follows:

$$F_{n}(x) = \delta_{2r}(x) \left\{ [w_{n}(x)]^{2r} q_{n+1}(x) \right\}.$$

Now, making use of Leibnitz formula and Lemma 2, we get

$$F_{n}^{(2r+1)}(1) = \delta_{2r}^{(2r+1)}(1)[w_{n}(1)]^{2r}q_{n+1}(1) + \left\{ \begin{pmatrix} 2r+1\\ 2r \end{pmatrix} \delta_{2r}^{(2r)}(1) \left\{ 2r[w_{n}(1)]^{2r-1}w_{n}'(1)q_{n+1}(1) + [w_{n}(1)]^{2r}q_{n+1}'(1) \right\}.$$
(2.13)

We know that

$$(1-x^2)w_n'(x) - 2(\alpha+1)xw_n'(x) + n(n+2\alpha+1)w_n(x) = 0$$
(2.14)

hence

$$w'_{n}(1) = \frac{n(n+2\alpha+1)}{2(\alpha+1)} w_{n}(1), w_{n}(1) = \binom{n+\alpha}{n}$$
(2.15)

So, from (2.13) and (2.15) it follows that

$$F_{n}^{(2r+1)}(1) = 2^{2r-1}(2r+1)![w_{n}(1)]^{2r} \left\{ 2q_{n+1}'(1) + 2r \left[1 + \frac{n(n+2\alpha+1)}{1+\alpha} \right] q_{n+1}(1) \right\}.$$
 (2.16)

We also know that

$$w_n(-1) = (-1)^n w_n(1), \tag{2.17}$$

$$w'_{n}(-x) = (-1)^{n+1} w'_{n}(x).$$
(2.18)

Further, using Leibnitz formula, Lemma 2, (2.17) and (2.18) one can easily verify that

$$F_{n}^{(2r+1)}(-1) = 2^{2r-1}(2r+1)! [w_{n}(1)]^{2r} \left\{ 2q_{n+1}'(-1) - 2r \left[1 + \frac{n(n+2\alpha+1)}{1+\alpha} \right] q_{n+1}(-1) \right\}.$$
(2.19)

Next, let m = 2r + 1. We now write

$$F_n(x) = \lambda_r(x)[(1-x^2)^{r+1}w_n(x)q_{n+1}(x)].$$

Again, on using Leibnitz formula, Lemma 1 and (2.14), it follows that for $k = 1, 2, \dots, n$,

$$F_{n}^{(2r+2)}(x_{k}) = (2r+1)(2r+2)(1-x_{k}^{2})^{r}w_{n}'(x_{k})\lambda_{r}^{(2r)}(x_{k})\left[(1-x_{k}^{2})q_{n+1}'(x_{k}) + (2r+1)(\alpha-1)x_{k}q_{n+1}(x_{k})\right]$$
(2.20)

Further, to compute $F_n^{(2r+2)}$ (±1), we write

$$F_{n}(x) = \delta_{2r}(x) \Big[(1-x^{2}) w_{n}^{2r+1}(x) q_{n+1}(x) \Big]$$

and use Leibnitz formula to get

$$F_n^{(2r+1)}(x) = \sum_{i=0}^{2r+2} {2r+2 \choose i} \delta_{2r}^{(i)}(x) \left[(1-x^2) w_n^{2r+1}(x) q_{n+1}(x) \right]^{(2r+1-i)}.$$
 (2.21)

On simplification using Lemma 2, (2.21) yields

$$F_{n}^{(2r+2)}(1) = -(2r+2)! 2^{2r} w_{n}^{2r+1}(1) \left[2q_{n+1}'(1) + (2r+1) \left\{ \frac{n(n+2\alpha+1)}{\alpha+1} + 1 \right\} q_{n+1}(1) \right],$$
(2.22)

$$F_{n}^{(2r+2)}(-1) = (-1)^{n}(2r+2) ! 2^{2r}w_{n}^{2r+1}(-1) \left[2q_{n+1}^{\prime}(-1) - (2r+1) \left\{ \frac{n(n+2\alpha+1)}{\alpha+1} + 1 \right\} q_{n+1}(-1) \right].$$
(2.23)

Hence the conditions

$$F^{(m+1)}(x_k) = 0, \ k = 0, \ 1, \ 2, \cdots, \ n+1$$

along with (2.12), (2.16), (2.19), (2.20), (2.22) and (2.23) imply (2.9), (2.10) and (2.11) for *m* even or odd. This completes the proof of Lemma 3.

LEMMA 4. Let $q_{n+1}(x)$ be a polynomial of degree $\leq n+1$ which satisfies the following n+2 conditions:

$$(1 - x_k^2)q'_{n+1}(x_k) + m(\alpha - 1)x_kq_{n+1}(x_k) = 0, k = 1, 2, \cdots, n; \alpha > -1,$$
(2.24)

$$2q'_{n+1}(1) + m\left[\frac{n(n+2\alpha+1)}{1+\alpha} + 1\right]q_{n+1}(1) = 0,$$
(2.25)

$$2q'_{n+1}(-1) - m\left[\frac{n(n+2\alpha+1)}{1+\alpha} + 1\right]q_{n+1}(-1) = 0.$$
 (2.26)

Then $q_{n+1}(x)$ satisfies the following equation:

$$(1-x^2) q'_{n+1}(x) + m(\alpha-1) x q_{n+1}(x) = c[x^2 - \Delta(\alpha)] w_n(x), \qquad (2.27)$$

where c is an arbitrary constant and

$$\Delta(\alpha) = \frac{\frac{n(n+2\alpha+1)+\alpha+1}{1+\alpha} \left[\binom{n+\alpha}{n} \left\{ \frac{m(1-\alpha)+2}{1-\alpha} \right\} + 1 \right] + \left[2\binom{n+\alpha}{n} - 1 \right]}{\frac{n(n+2\alpha+1)+\alpha+1}{1+\alpha} \left[\binom{n+\alpha}{n} \left\{ \frac{m(1-\alpha)+2}{1-\alpha} \right\} + 1 \right] - \left[2\binom{n+\alpha}{n} + 1 \right]}, \quad \alpha \neq 1.$$
(2.28)

PROOF. Due to (2.24), it follows that

$$(1-x^2)q'_{n+1}(x) + m(\alpha-1)xq_{n+1}(x) = (cx^2 + dx + e)w_n(x), \qquad (2.29)$$

where c, d and e are constants. From (2.29), (2.15) and (2.17) we see that

$$m(\alpha - 1)q_{n+1}(1) = (c+d+e)\binom{n+\alpha}{n},$$
(2.30)

$$-m(\alpha-1)q_{n+1}(-1) = (c-d+e)(-1)^n \binom{n+\alpha}{n}.$$
(2.31)

Also, on differentiating (2.29) we have

$$(1 - x^{2})q_{n+1}''(x) + [m(\alpha - 1) - 2]xq_{n+1}'(x) + m(\alpha - 1)q_{n+1}(x) =$$

$$(cx^{2} + dx + e)w_{n}'(x) + (2cx + d)w_{n}(x).$$
(2.32)

Hence, from (2.32) we conclude that

$$[m(\alpha - 1) - 2]q'_{n+1}(1) + m(\alpha - 1)q_{n+1}(1) = (c + d + e)w'_n(1) + (2c + d)w_n(1),$$
(2.33)

$$-[m(\alpha-1)-2]q'_{n+1}(-1)+m(\alpha-1)q_{n+1}(-1)=(c-d+e)w'_n(-1)+(-2c+d)w_n(-1).$$
(2.34)

Further, from (2.30), (2.31), (2.15), (2.17), (2.18), (2.33) and (2.34) it follows that

$$[m(\alpha-1)-2] q'_{n+1}(1) = (c-e) {\binom{n+\alpha}{n}} + (c+d+e) \frac{n(n+2\alpha+1)}{2(\alpha+1)},$$
(2.35)

$$[m(\alpha-1)-2] q'_{n+1}(-1) = (-1)^n \left[(c-e) \binom{n+\alpha}{n} + (c-d+e) \frac{n(n+2\alpha+1)}{2(\alpha+1)} \right].$$
(2.36)

Consequently, on substituting the values of $q_{n+1}(1)$, $q'_{n+1}(1)$, $q_{n+1}(-1)$ and $q'_{n+1}(-1)$ from the above equations into (2.25) and (2.26) and simplifying we get

$$\left[\left\{2\binom{n+\alpha}{n}-1\right\}c-d-\left\{2\binom{n+\alpha}{n}+1\right\}e\right] + (c+d+e)\left[\frac{n(n+2\alpha+1)}{1+\alpha}+1\right]\left[\binom{n+\alpha}{n}\left\{m+\frac{2}{1-\alpha}\right\}+1\right]=0,$$
(2.37)

$$\left[\left\{2\binom{n+\alpha}{n}-1\right\}c+d-\left\{2\binom{n+\alpha}{n}+1\right\}e\right] + (c-d+e)\left[\frac{n(n+2\alpha-1)}{1+\alpha}+1\right]\left[\binom{n+\alpha}{n}\left\{m+\frac{2}{1-\alpha}\right\}+1\right]=0.$$
(2.38)

Now, from (2.37) and (2.38) we see that d = 0 and

$$\left[2\left(\frac{n+\alpha}{n}\right)-1\right]c - \left[2\left(\frac{n+\alpha}{n}\right)+1\right] + (c+e)\left[\frac{n(n+2\alpha+1)+1+\alpha}{1+\alpha}\right]\left[\left(\frac{n+\alpha}{n}\right)\left\{\frac{m(1-\alpha)+2}{1-\alpha}\right\}+1\right] = 0$$

which, on simplification, yields

$$e = -\frac{\frac{n(n+2\alpha+1)+\alpha+1}{1+\alpha} \left[\binom{n+\alpha}{n} \left\{\frac{m(1-\alpha)+2}{1-\alpha}\right\}+1\right] + \left[2\binom{n+\alpha}{n}-1\right]}{\frac{n(n+2\alpha+1)+\alpha+1}{1+\alpha} \left[\binom{n+\alpha}{n} \left\{\frac{m(1-\alpha)+2}{1-\alpha}\right\}+1\right] - \left[2\binom{n+\alpha}{n}+1\right]}c$$
(2.39)

or, using (2.28) we have

$$e = -\Delta(\alpha)c. \tag{2.40}$$

This completes the proof of Lemma 4.

3. PROOF OF THEOREM 1 AND THEOREM 2.

Let *E* be the incidence matrix given by (1.3) and let *X* be the set of zeros of $(1-x^2)P_n^{(\alpha)}(x) = (1-x^2)w_n(x)$. Let $F_n(x)$ be a polynomial of degree $\leq (n+2)(m+1)-1$ annihilated by (E, X). We have to ascertain if $F_n(x)$ is identically zero. Since

$$F_n(x_k) = F'_n(x_k) = F''_n(x_k) = \cdots = F_n^{(m-1)}(x_k) = 0, \ k = 0, \ 1, \cdots, \ n+1,$$
$$F_n(x) = [(1-x^2)w_n(x)]^m q_{n+1}(x),$$

where $q_{n+1}(x)$ is a polynomial of degree $\leq n+1$. Further, since we have required that

$$F_n^{(m+1)}(x_k) = 0, \ k = 0, \ 1, \cdots, \ n+1,$$

on account of Lemma 4, $q_{n+1}(x)$ satisfies the following equation:

$$(1-x^2)q'_{n+1}(x) + m(\alpha-1)xq_{n+1} = c[x^2 - \Delta(\alpha)]w_n(x),$$
(3.1)

where c is a numerical constant. Let

$$q_{n+1}(x) = \sum_{k=0}^{n+1} a_k w_k(x).$$
(3.2)

Further, it is well-known that

$$(1 - x2)w'_{n}(x) = -nxw_{n}(x) + (n + \alpha)w_{n-1}(x).$$
(3.3)

Now, from (3.1), (3.2) and (3.3), on simple computations, it follows that

$$\sum_{k=1}^{n+2} a_{k-1} \left[m(\alpha-1) - k + 1 \right] \frac{k(k+2\alpha)}{(k+\alpha)(2k+2\alpha-1)} w_k(x) + \sum_{k=0}^{n} a_{k+1}(k+\alpha+1) \left[1 + \frac{m(\alpha-1) - k - 1}{2k+2\alpha+3} \right] w_k(x) = c[x^2 - \Delta(\alpha)] w_n(x).$$
(3.4)

Also, we know that

$$xw_{n}(x) = \frac{(n+1)(n+2\alpha+1)}{(2n+2\alpha+1)(n+\alpha+1)} w_{n+1}(x) + \frac{(n+\alpha)}{(2n+2\alpha+1)} w_{n-1}(x).$$
(3.5)

Repeated application of (3.5) in (3.4), on simplification, yields

$$\sum_{k=0}^{n} a_{k+1} \frac{(k+\alpha+1) \left[k+\alpha(m+2)+2-m\right]}{(2k+2\alpha+3)} w_{k}(x)$$

$$+ \sum_{k=1}^{n+2} a_{k-1} \frac{\left[m(\alpha-1)-k+1\right]k(k+2\alpha)}{(k+\alpha) (2k+2\alpha-1)} w_{k}(x)$$

$$= Aw_{n-2}(x) + Bw_{n}(x) + Cw_{n+2}(x), \qquad (3.6)$$

where

$$A = \frac{(n+\alpha)(n+\alpha-1)}{(2n+2\alpha+1)(2n+2\alpha-1)} c,$$
 (3.7)

$$B = \left[\frac{(n+1)(n+2\alpha+1)}{(2n+2\alpha+1)(2n+2\alpha+3)} + \frac{n(n+2\alpha)}{(2n+2\alpha+1)(2n+2\alpha-1)} - \Delta(\alpha)\right]c,$$
(3.8)

$$C = \frac{(n+1)(n+2\alpha+1)(n+2)(n+2\alpha+2)}{(n+\alpha+1)(n+\alpha+2)(2n+2\alpha+1)(2n+2\alpha+3)}c.$$
(3.9)

223

Consequently, we obtain

$$\frac{(1+\alpha)\left[\alpha(m+2)+2-m\right]}{2\alpha+3}a_{1} = 0,$$

$$\frac{(k+1+\alpha)\left[k+\alpha(m+2)+2-m\right]}{(2k+2\alpha+3)}a_{k+1} + \frac{k(k+2\alpha)\left[m(\alpha-1)-k+1\right]}{(k+\alpha)\left(2k+2\alpha-1\right)}a_{k-1} = 0,$$

$$k = 1, 2, \cdots, n-4, n-3,$$

$$\frac{(n+\alpha-1)\left[n+\alpha(m+2)-m\right]}{(2k+2\alpha-1)}a_{n-1} + \frac{\left[m(\alpha-1)-n+3\right]\left(n-2\right)\left(n+2\alpha-2\right)}{(n+\alpha-2)\left(2n+2\alpha-5\right)}a_{n-3} = A$$

$$\frac{(n+\alpha)\left[n+\alpha(m+2)+1-m\right]}{(2n+2\alpha+1)}a_{n} + \frac{\left[m(\alpha-1)-n+2\right]\left(n-1\right)\left(n+2\alpha-1\right)}{(n+\alpha-1)\left(2n+2\alpha-3\right)}a_{n-2} = 0,$$

$$\frac{(n+\alpha+1)\left[n+\alpha(m+2)+2-m\right]}{(2n+2\alpha+3)}a_{n+1} + \frac{\left[m(\alpha-1)-n+1\right]n(n+2\alpha)}{(n+\alpha)\left(2n+2\alpha-1\right)}a_{n-1} = B,$$

$$\frac{(n+2\alpha+1)\left(n+1\right)\left[m(\alpha-1)-n\right]}{(n+\alpha+1)\left(2n+2\alpha+1\right)}a_{n} = 0,$$

 \mathbf{and}

$$\frac{(n+2)(n+2\alpha+2)[m(\alpha-1)-n-1]}{(n+\alpha+2)(2n+2\alpha+3)}a_{n+1}=C.$$

Let m be an odd positive integer ≥ 3 :

(i) If n is odd, $-1 < \alpha < 1$, and α is such that $m - 1 - \alpha(m+2)$ is an even positive integer then

$$a_n = a_{n-2} = \cdots = a_3 = a_1 = 0$$

 \mathbf{and}

$$a_0 = a_2 = \cdots = a_{m-3-\alpha(m+2)} = 0$$

but $a_{m-1-\alpha(m+2)}a_{m+1-\alpha(m+2)}\cdots a_{n+1}$ are note necessarily zero. Hence, $q_{n+1}(x)$ is not identically zero. If n is odd, $-1 < \alpha < 1$, and α is such that $m-1-\alpha(m+2)$ is an even negative integer then

 $a_n = a_{n-2} = \cdots = a_3 = a_1 = 0$

and a_0, a_2, \dots, a_{n-3} are not necessarily zero. Hence, $q_{n+1}(x)$ is not identically zero. If n is odd, $-1 < \alpha < 1$, and α is such that $m-1-\alpha(m+2)$ is an odd integer or a fraction then

$$a_n = a_{n-2} = \cdots = a_3 = a_1 = 0$$

but $a_0, a_2, \dots, a_{n-3}, a_{n-1}$ and a_{n+1} are not all zero. Hence, $q_{n+1}(x)$ is not identically zero. So, it follows that (E, X) is singular if n is odd.

(ii) If n is even, $-1 < \alpha < 1, \alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an odd positive integer then

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$

and

 $a_1 = a_3 = \cdots = a_{m-3-\alpha(m+2)} = 0,$

but $a_{m-1-\alpha(m+2)}, a_{m+1-\alpha(m+2)}, \dots, a_{n+1}$ are not necessarily zero. Hence, $q_{n+1}(x)$ is not identically zero. If n is even, $-1 < \alpha < 1$, $\alpha \neq \frac{m-2}{m+2}$, α is such that $m-1-\alpha(m+2)$ is an odd negative integer then

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0.$

Noting that $a_1 = 0$ we conclude that

$$a_1 = a_3 = \cdots = a_{n-3} = 0.$$

Recalling the equations for a_{n-1} and a_{n+1} and substituting the values of A, B, and C it can be easily verified that c = 0. So, a_{n-1} and a_{n+1} are also zero. Hence, $q_{n+1}(x)$ is identically zero. If n is even, $-1 < \alpha < 1, \alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an even positive integer then

$$a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$$

 \mathbf{and}

$$a_1 = a_3 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0.$$

Hence, $q_{n+1}(x)$ is identically zero.

If n is even, $-1 < \alpha < 1, \alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an even negative integer then

$$a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$$

and

$$a_1 = a_3 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0.$$

Hence, $q_{n+1}(x)$ is identically zero.

If n is even, $-1 < \alpha < 1$, $\alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is a fraction then

$$a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$$

 \mathbf{and}

$$a_1 = a_3 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0.$$

Hence, $q_{n+1}(x)$ is identically zero. Consequently, if n is even, $-1 < \alpha < 1$, $\alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an odd positive integer then (E,X) is singular and for all other values of $m-1-\alpha(m+2), (E,X)$ is regular.

(iii) If n is even, $\alpha = \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is a negative integer then

$$a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$$

and a_1, a_3, \dots, a_{n-3} are not necessarily zero. Hence, $q_{n+1}(x)$ is not identically zero. If n is even, $\alpha = \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an odd positive integer then

$$a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$$

and

$$a_1=a_3=\cdots\cdots=a_{m-3-\alpha(m+2)}=0$$

224

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$

and a_1, a_3, \dots, a_{n-3} are not necessarily zero. Hence, $q_{n+1}(x)$ is not identically zero.

Consequently, in this case, (E, X) is singular.

This completes the proof of Theorem 1.

- Next, let m be an even positive integer ≥ 2 , and $-1 < \alpha < 1$:
- If n is odd then (i)

$$a_n = a_{n-2} = \cdots = a_3 = a_1 = 0$$

but not all a_0, a_2, \dots, a_{n+1} are zero. Hence, $q_{n+1}(x)$ is not identically zero. So, (E, X) is singular. (ii) If n is even and $\alpha = \frac{m-2}{m+2}, 0 \le \alpha < 1$, then

$$a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$$

but a_1, a_3, \dots, a_{n-3} are not necessarily zero. Hence $q_{n+1}(x)$ is not identically zero. Consequently, (E, X) is singular.

(iii) If n is even, $\alpha \neq \frac{m-2}{m+2}$, and α is such that $m-1-\alpha(m+2)$ is an odd positive integer then

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$

 \mathbf{and}

$$a_1 = a_3 = \cdots = a_{m-3-\alpha(m+2)} = 0,$$

but $a_{m-1-\alpha(m+2)}$, $a_{m+1-\alpha(m+2)}$, \cdots , a_{n+1} are not necessarily zero. Hence $q_{n+1}(x)$ is not identically zero.

If n is even, $\alpha \neq \frac{m-2}{m+2}$ and α is such that $m-1-\alpha(m+2)$ is an odd negative integer then

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$

and since $k + \alpha(m+2) + 2 - m$ is never zero for even values of k hence

 $a_1 = a_3 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0.$

So, $q_{n+1}(x)$ is identically zero.

If n is even, $\alpha \neq \frac{m-2}{m+2}$ and α is such that $m-1-\alpha(m+2)$ is an even positive integer then

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$

and also $a_1 = 0$ so that $k + \alpha(m+2) + 2 - m$ is never zero for even values of k hence

 $a_1 = a_3 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0.$

Consequently, $q_{n+1}(x)$ is identically zero.

If n is even, $\alpha \neq \frac{m-2}{m+2}$ and α is such that $m-1-\alpha(m+2)$ is an even negative integer then

 $a_n = a_{n-2} = \cdots = a_2 = a_0 = 0$

and also $a_1 = 0$ so that $k + \alpha(m+2) + 2 - m$ is never zero hence

 $a_1 = a_3 = a_5 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0.$

Consequently, $q_{n+1}(x)$ is identically zero.

If n is even, $\alpha \neq \frac{m-2}{m+2}$ and α is such that $m-1-\alpha(m+2)$ is a fraction then $a_n = a_{n-2} = \cdots = a_0 = 0$,

 $a_1 = 0$, so $a_1 = a_3 = a_5 = \cdots = a_{n-3} = a_{n-1} = a_{n+1} = 0$.

Therefore, $q_{n+1}(x)$ is identically zero. Consequently, (E, X) is singular if $m-1-\alpha(m+2)$ is an odd positive integer and regular otherwise. This completes the proof of Theorem 2.

In conclusion, it is worthwhile to mention that H. Windauer [7] has also considered the modified $(0, 1, \dots, r-2, r)$ -interpolation problem on the zeros of $(1-x^2)P_n^{(\alpha)}(x), \alpha > -1$, and $(0, 1, \dots, r-2, r)$ -interpolation problem on the zeros of $P_n^{(\alpha)}(x), \alpha > -1$. As is evident, we have addressed the $(0, 1, \dots, r-2, r)$ -interpolation problem on the zeros of $(1-x^2)P_n^{(\alpha)}(x), \alpha > -1$.

REFERENCES

- 1. ANDERSON, C.H. & PRASAD, J., On the non-existence of some interpolatory polynomials, Internat. J. Math. & Math. Sci. 9 (1986), 753-756.
- 2. BAJPAI, P. & SAXENA, R.B., Some regular and singular pairs of Birkhoff interpolation, Demonstratio Mathematica XXII, No. 3, (1989), 583-597.
- 3. PRASAD, J. & ANDERSON, C.H., Some remark on non-existence of interpolation polynomials, *Mathematicae Notae AÑO XXIX*, (1981/82), 67-72.
- SURÁNYI, J. & TURÁN, P., Notes on interpolation I, Acta Math. Acad. Sci. Hung. 6, (1955), 66-79.
- 5. VARMA, A.K., Non-existence of interpolatory polynomials, Publ. Math. (Debrecan) 15, (1968), 75-77.
- 6. VARMA, A.K., An analogue of a problem of J. Balaźs and P. Turán III, Trans. Amer. Math. Soc. 146, (1969), 107-120.
- 7. WINDAUER, H., Existenz und Eindeutigkeit bei der Hermite-Bikhoff-Interpolation (Dissertation). Bochum, Ruhr-Universitaet, 1972.