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ABSTRACT. We give new formulae applicable to the theory of partitions. Recent work

suggests they also relate to quasi-crystal structure and self-similarity. Other recent work has

given continued fractions for the type of functions herein. Hardy originally gave such formulae as

ours in early work on gap power series which led to his and Littlewood’s "High Indices" Theorem.

Over a decade ago, Mahler and then others proved results on irrationality of decimal fractions

applicable to types of functions we consider.
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1. INTRODUCTION.
Hardy in his classical book on Ramanujan ([12], p 39), gives the formula, essentially (for

Rex>0),
o 2kit -Zr-x log 2 (1.1)

with ’ over all non-zero integers k. The oscillatory part on the right side eluded Ramanujan,

perhaps because the Euler Maclaurin formula ([1], p 806, 23.1.30) yields 1/(x log 2) exactly. This

assumption led Ramanujan astray in his theory of distribution of prime numbers.

The series ,exp(2kx) in various forms has been considered by numerous authors with

varying perspectives during the past century. Hardy considered it hilst examining gap power

series in the context of the so called converse of Abel’s Theorem. He gave formulae such as in

[9]: If a is an integer greater than 1, and Re x > 0,

The ’ summed part here oscillates between finite limits, or "wobbles." These wobbles are

self-similar and clearly the function in question here satisfies the functional equation

F(x) F(ax). (1.3)

As mentioned recently in Ninham [25], and also in his work with Frankel, Glasser and

Highes [8], these wobbling functions scale at every level, but are not fractal in the sense of

Mandelbrot, being everywhere differentiable. Both types of functions are continuous, although it

appears that the functions we consider here may have physical applications to at least quasi-

crystal spectra (see [25]), and furthermore, since they arise from Fourier transforms of periodic

delta functions they may be of great fundamental significance in other ways.
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Mahler IO] considered cases of the function

f(z)-f(-l+i)- e-" (0< < 1) (1.4)
k--1

where it happens exceptionally that limt +0 f(z) exists, and tends to a definite finite value.

Central to the considerations of Hardy and Littlewood [8, 11, 13, 16] was the idea that as

z 0 in (1.4) the series does not tend to a limit consistent with a simple converse of Abel’s

Theorem (see also P61ya [34]). In [20], Mahler showed that if

Ig(1/2t)log (1.5)

with [z] as usual the greatest integer in z, and both

lira
log 2

,-, +0 log(1/tj f(e-’+ :=

and

tim
1 N-I e2’’ 4,,

N- Y g.() (1.7)
n--0

then, for 0 < p <_ q- 1, (p, q) 1, with q odd,

91(27r p/q) 92(2r p/q)

! exp(2,r ip/q)
n=l

(1.8)

Here r o(q), the Euler totient function of q. The sum of (1.8) is a Gaussian period from the

theory of cyclotomy (see Kummer [15]).
Mahler [20] showed that if g > 2 is a fixed integer, the decimal fraction given by

0.(1)(9)(92)(z)

where (g’) is to mean the number g’ written in decimal form, is irrational. His methods are

often simply apphed to the gap series of our present note. Several authors have since worked on

similar problems (see [4, 5, 6, 24, 26 to 29, 34, 35, 38]).
In recent years interest has arisen in the continued fraction forms of series such as f(z) of

(1.4). For an account of such work see [4, 23, 30, 32, 33, 36, 37].

2. SOME NEW RESULTS.

As an undergraduate student in 1979 the author gave the following formula (see [7]), which

has Hardy’s formula (1.2) as the case m 0.
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THEOREM 2.1. For non-negative integers m, Re z 0, Re a > 1,

--aka )71 (2.1.1)

’L (m+l(m + )(log a)"+ j
d=0

) FI’"+I-J)(1)( lg xl) (2.1.2)

Bm+l (2.1.3)
m+l

(2.1.4)

where F() is the 3-th derivative of the gamma finction, B,, the m-th Bernoulli number, X,’ is

the sum over nonzero integers k, and k.... at k rn O.

Although [7] was accepted for publication it never actually appeared in print. There are

several features of this theorem worth noting at this point:-

(i) The derivatives at unity of the gamma function as in (2.1.2) are easily found from the

expansion valid for Iz[ < 1, (see [1, pp259, 6.3.14; and [3])

r’( + z)
r(1 + z) -3’ + ((2)z ((3)z + ((4)z (2.2)

171.2 1(3)so that P’(1) --),, P(=)(1) ,,/2 + (1) -7 2"/r2 2((3), and so on.

that

(ii) The relationship of the integral in (2.1.4) to the gamma function is obviated by reahsing

log
dt -"’" r 2)

x x re*
x ia log

1 2kit

x loga (2.3)
j=O

Indeed, the version of Theorem 2.1 given in [7] has the stun of (2.3) in place of the integral. Taking

(2.3) into account, the summation (2.1.4) is seen to converge bilaterally, owing to the fact [1, pp

257, 6.1.45] that for fixed m and 1 + < Ret < Rea(* > 0),

( 2kir ( 1 2kr ) 2krt -’P(’’) 1 + log/]
exp " og-i E A(m, j) ot (2.4)

3=0

where

(7) l+J)( 1r(A(m, j) (2)
r()

(iii) Hardy’s method of proving (1.2) relied on a simple Mellin inversion applied to the left

side series. Such a straightforward application designed to arrive at Theorem 2.1 would involve

the rather non-trivial evaluation of residues leading to

1 /-+’ {’a } fi ( )2i
F(-u)x" S) a j!

(1 )+ (-)" -k=l

+ the addition of (2.1.2), (2.1.3) and (2.1.4), in which S} are Stirling numbers of the second

kind.
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(iv) It can be seen from the above, that (2.1.4) is a sum of m + oscillating functions, each
multiplied by a power of log x. Each oscillating function is of order o(1) and oscillates between
finite limits. In Hardy’s original paper [9] estimates were given for these limits in terms of a. In
Mahler [201 an elementary method for obtaining such estimates was also given. However, if a 2

in (1.2) it is easy to use a small calculator to establish that the oscillatory term only enters in

after about the fourth decimal place, so for a 2, o(0.001) seems a conservative estimate for the

oscillatory function under

3. PROOFS OF THEOREM 2.1.

The first proof of Theorem 2.1 appeared in Campbell [7]. It depended on Lemma 3.1 below,

and comparing partial derivatives with respect to the different variables, then comparison to

obtain a constant of integration (2.1.3). This was somewhat of a departure from the approach

taken by Hardy, since the method in [7] required

distinct to a as an integer greater than unity. (1.1) as it appears in Hardy’s book on Ramanujan

[12] actually has a misprint indicating the author was not thinking of a continuous variable a.

The landmark paper of Hardy and Littlewood [13] contains theorems of sufficient generality to

justify all of the differentiations of the series of kind (2.1.1) as they occur in [7] and in the present

note. (1.1) is a case of the following.

Lemma 8.1. I/’Rez > 0, Rea > 1, Ren > 0,

}=-

ak’e
z" loga r(n)- F n + iggt z o’,. (3.1)

PROOF. This comes easily from both straightforward application of the r ue theorem,
and by summing on the Mellin inversion formula, so the integral

2ri r(-=)*" (x a==)-I d=

is given the two expressions

and

(3.2)

E a’’ e-a (3.3)
k=O

a_kn .-a-z + R.H.S. of (3.1)
k--1

PROOF OF THEOREM 2.1. We consider the behaviour of the terms in the bilateral

series on the left side of (3.1) as n 0. In the direction with positive k terms the series clearly
converges, however for negative k terms the series

E e-- (3.4)

diverges, each term approaching unity successively. We may compensate for this by subtracting
the function

a_kn a

1 a
k--1

from both sides of (3.1) so that (3.4) becomes the convergent

E (e-- 1)
k--1



GENERALIZED FORMULA OF HARDY 373

when n 0, and we are left with Hardy’s formula (1.2), after calculating the corresponding limit

for the right side of the compensated version of (3.1). Next, we see that if (3.1) be written in the

form

+ a- (e "-1)
k--0 k=l

__r() x
kr+ ig-g/ (3.)z" log a 1 a " log a

we can formy expand each side into power series in n and equate coefficients to ve at the

theorem. This is justified since (3.5) holds for any n > 0 in the neighbourhood of n 0.

SKETCH OF THE EARLIER UNPUBLISHED PROOF. Whilst the proof in Camp-
bell [7] is longer and more laboured, it has the merit of showing an interplay between the inde-

pendent variables z, a, and n. It starts with our Lemma 3.1 and uses the fact that

ak(log )
k=-o

k"take-az

}-0 _o + ),.(
_,

(:]X
k=0 k=l

Integration with respect to z gives the major terms of Theorem 2.1, with the constant term (2.1.3)
obtained from the functional equation

/" (’ =/"1 E"= f (’ "1

clearly satisfied by the series (2.1.1). Of course the crucial part of all this is Lemma 3.1, and

neither of the two proofs could stand without it.

4. CONNECTIONS WITH PARTITION THEORY.

Theorem 2.1 and indeed Lemma 3.1 itself may be used to derive identities for generating

functions of partitions of various sorts into a-th powers. To begin just with (1.2), we can easily

show that

THEOREM 4.1. H Rea > 1, and Re > 0 with z e-t,

II II l+z"-
=o =1

2 (4.1)

(o)o ,o. 1 ,o

{ -1 :2ki’) ( 2ki’)(-,,,,) 1
xexp 1-ogaE’F\l-ga, l/lga 1-2-a- (log)

We note that as a corollary, if a 2 we have the elementary result
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or simply

+ a: ’2"

=0
2 Io

(1 q_ a:2-, ) 1-xII 2 logk=l

(4.2)

IIOOF OF THEOREM 4.1. (4.1)may be known, since it is so easily accessible by (1.2).
The proof involves application of the operation

Z (--I)a+I f(a, zj)j-1
3--1

to (1.2), letting either side of (1.2) be f(a, ). This, for the left side gives the logarithm of the

left side of (4.1). For the right side the same procedure leads to the required result if we know

that

Z (-1)+a log_k ! (log2) -’r log2 (4.3)k 2
k=l

(-1)+a k-(l+i") (1 + in)(1 2 -’’)
k=l

for real n :/: 0. (4.3) is given in Hardy’s note on Vacca’s series [10]. A little simplification thereafter

gives the theorem.

Just as Theorem 2.1 generalizes Hardy’s formula (1.2), the following formula, which appears

to be new, generalizes Theorem 4.1.

THEOREM 4.2. /fm, a, z, are as in Theorem 2.1,

)
(-k)

H 1 + e-a" exp(G1 (*)+ Z’ G.()) (4.4)
2

k=O k=l

where ’ is over non-zero integers k, and k 1 at k m O,

-1
Gl(m)

m + 1
B,+I log2

(m; m, m,. ma)r(’)(1)r(’)(1) log

G2(z)
1 "+ (_l)r(log(t/rz)),

r(l+2kiw/log a) e

(4.5)

(4.6)

where the sum in (4.5) is over m m + m2 + ma in non-negative integers and

m; ml, m2, ms)
m

m!m2!ma!

and also

r/(,)(1 Z(_I),+ _I log-

As with Theorem 2.!, Theorem 4.2 has several notable features:-

(4.7)
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(i) The function

lI + - P,,() -" (4.8)
k=0 k=0

clearly generates the number of partitions into no more than k terms of kind a’, according to

the methods in Andrews [2].

(ii) Estimates as z 0 for the function

H 2 (4.9)
k=l

are easily obtained, together with appropriate inequalities, enabling us, if we choose, to focus on

/4./.

(iii) Some modification of Mahler’s method [20] may be applicable to Theorem 4.2, thus

giving elementary estimates for the functions concerned.

(iv) If

r/(n) E(-1)}+: k
k=l

then for the terminology of in (4.5),

a()

(m;ml,m2,rrt)rt 2kin r(,,,) 1 + log- z

R.H.S. of (4.6)

The clue to this is the identity

(1 -t- 2 -t- 3) E (m; rrtl, m2, m3)? rt, rta (4.10)

of degree m, and that(v) It is clear from Theorem 4.2 that ax (x) is a polynomial in log

Ft"(1) and /"0(1) can be evaluated as finite combinations of Riemann zeta functions, and the

constants (7 70) (see [3])

+1
(.11)

k=l

which occur naturally in the expansion [1, pp 807, 23.2.5],

(.)=
1

+ O’ + (-1) (s 1)
! 7 (4.12)

k=l

Hardy [10] applied (4.11); and recently in [8] it is explained that (4.12) is necessary for obtaining

precise results for thermodynamic functions near the so-called "Hagedorn temperature" which

occurs in particle physics (hadron physics), related to prime and integer gases.

(vi) As a curiosity, if z is, say, equal to log 10, the decimal fraction obtained from (4.8) is

trivially calculated, and the corresponding (.9) type function can be found easily using a small

calculator. The oscillating functions are not so easily calculated, but the major terms of

are, as are the order of each of the rn + 1 oscillating functions in G2(z).
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PROOF OF THEOREM 4.2. This proof follows an analogous line to our proof of Theo-

rem 2.1. Lemma 3.1 easily transforms (under the same conditions) to

( =) ( )-(-/:)}1 ’r n + 10g-a ( n + + l)ga zlog a

which easily becomes (after dividing B.S. by the case with 2z for z)

k=0 k=l

r(n)r/(n + 1) log2 1 E’F n + l)gexp
z’ log a a 1 log a

when the compensating factor

gl(;)= () "-’
exp { log 2}_a1

is multiped to ech side. Theorem 4.2 comes easily from equating coecients

n in he loghm of ech side of 4.14.. CLOSING REMARKS.

The results of this paper evidently have consequences in number theory [12], and also in

physics as shown from [8] and [25]. Related topics have held the interest of mathematicians

such as Mahler for over 50 years. (See [17 to 22], especially [22], where Mahler reminisces about

the subject.) The approaches taken by Hardy, Littlewood and later P61ya suggest that series

of the kinds represented in this paper have been considered important for various reasons. In

[25] the self-similarity property of the oscillating "wobble" function was applied in an ingenious

fashion to Penrose tilings and quasi-crystalline structures having fivefold symmetries connected

with equi-angular spirals and Fibonacci sequences. Using methods of our current work, results

can be obtained for series involving Fibonacci numbers such as

k=0 k=l

which satisfies the functional equation
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