FIXED POINT OF NONEXPANSIVE TYPE AND K-MULTIVALUED MAPS

ABDUL LATIF

Department of Mathematics Gomal University, D.I. Khan Pakistan

TAQDIR HUSAIN

Department of Mathematics McMaster University Hamilton, Canada

and

ISMAT BEG

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan

(Received August 10, 1992)

ABSTRACT. Some fixed point theorems for nonexpansive type and K-multivalued mappings are proved. Also the strong convergence of sequences of iterates of multivalued type maps is established.

KEY WORDS AND PHRASES. Normed spaces, contractive type, nonexpansive type, K-multivalued maps and fixed points.
 1991 AMS SUBJECT CLASSIFICATION CODES. 47H04, 47H10, 54H25.

1. INTRODUCTION.

A single valued self-map of a metric space (X,d) is called contractive if $d(f(x), f(y)) \le hd(x, y)$ for all x, y in X and for a fixed number $h, 0 \le h < 1$. If

$$d(f(x), f(y)) \le d(x, y), \tag{1.1}$$

then f is known as a single valued nonexpansive mapping. A classical theorem (also known as the Contraction Principle) asserts that each contractive self-map of a complete metric space has a unique fixed point. It is clear that in general a nonexpansive self-mapping of a complete metric space need not have a fixed point. However, for such mappings defined on convex sets in a Banach space, some interesting fixed point results have been obtained by Browder [2] and Kirk [12].

The notion of contractiveness and nonexpansiveness for multivalued maps has been extended in several ways and some fixed points of such multivalued functions have also been established. See, for example, [1], [8], [13].

The second author and Tarafdar [5] introduced the notion of a nonexpansive type multivalued map and proved a fixed point theorem on compact intervals of the real line, which has been extended by Husain and Latif ([6], [7]) in several directions.

Kannan ([9], [10]) has proved some fixed point theorems for single valued self-mappings f of a metric space (X,d) satisfying the property:

$$d(f(x), f(y)) \le \frac{1}{2} \{ d(x, f(x)) + d(y, f(y)) \}.$$
(1.2)

We shall call a mapping satisfying (1.2) a K-mapping in the sequel. It is known [10] that conditions (1.1) and (1.2) are independent. Kannan [11] proves some fixed point theorems for K-mappings on certain subsets of Banach spaces.

In this paper, we prove some fixed point theorems (see section 2) for nonexpansive type multivalued maps which extend results in [7] and include the result of Dotson [4]. Section 3 deals with the notion of K-multivalued mappings which is a generalization of K-mappings and we prove some fixed point results for such mappings.

We recall the following notions needed in the sequel.

Let C be a nonempty subset of a metric space (X,d). A multivalued map $J: C \to 2^X$ (nonempty subsets of X) is called contractive type [7] if for all $x \in C, u_x \in J(x)$ there is a $u_y \in J(y)$ for all $y \in C$ such that

$$d(u_x, u_y) \le h \ d(x, y)$$

for a fixed real number $h, 0 \le h < 1$. This notion clearly generalizes the usual concept of contractive maps [7]. Further, if in the above inequality we have

$$d(u_x, u_y) \le d(x, y)$$

then J is called a nonexpansive type map. An element $x \in C$ is called a fixed point of J if $x \in J(x)$.

A Banach space X is said to satisfy Opial's condition [14] if for each $x \in X$ and for each sequence $\{x_n\}$ weakly convergent to x, the inequality

$$\lim_{n \to \infty} \inf \|x_{n} - y\| > \lim_{n \to \infty} \inf \|x_{n} - x\|$$

holds for all $x \neq y$. Every Hilbert space satisfies Opial's condition [14] and so does each $l_p(1 .$

A subset C of a linear space X is said to be star-shaped if there is a $x_0 \in C$ such that $\{tx + (1-t)x_0: 0 \le t \le 1\} \subset C$ for each $x \in C$. The element x_0 is called a star-centre for C. The class of star-shaped subsets of X includes convex subsets as a proper subclass. We denote $d(C) = \sup_{x, y \in C} ||x - y||$ and $F(x, C) = \sup_{y \in C} ||x - y||$. We know:

THEOREM 1.1 [7]. Let C be a nonempty closed subset of a complete metric space (X,d). Then each closed-valued contractive type multivalued mapping $J: C \rightarrow 2^C$ has a fixed point.

THEOREM 1.2 [7]. Let C be a nonempty weakly compact convex subset of a Banach space X which satisfies Opial's condition. Then each compact-valued nonexpansive type multivalued mapping $J: C \rightarrow 2^C$ has a fixed point.

2. NONEXPANSIVE TYPE MULTIVALUED MAPS.

Now we extend Theorem 1.2. But first, we show

THEOREM 2.1. Let C be a nonempty closed star-shaped subset of a Banach space X and $J:C\rightarrow 2^{C}$ a compact-valued nonexpansive type multivalued mapping. If J(C) is bounded and (I-J)C is closed, then J has a fixed point.

PROOF. Consider a sequence of positive numbers $\{t_n\}$ converging to 1 and $0 < t_n < 1$ for all

 $n \ge 1$. Let x_0 be a start-centre of C. For each $n \ge 1$, define the multivalued mapping J_n of C into 2^C by setting:

$$J_n(x) = t_n J(x) + (1 - t_n) x_0$$

= { $t_n u + (1 - t_n) x_0$; $u \in J(x)$ }.

For each $n \ge 1, J_n$ is a closed valued contractive type multivalued mapping. Therefore, Theorem 1.1 implies that for each $n \ge 1$, there exists a $x_n \in C$ such that $x_n \in J_n(x)$. From the definition of $J_n(x)$, there is a $u_n \in J(x_n), n \ge 1$ such that

$$x_n = t_n u_n + (1 - t_n) x_0.$$

$$x_n - u_n = (1 - t_n)(x_0 - u_n)$$

Since J(C) is bounded, due to the fact that $t_n \rightarrow 1$ as $n \rightarrow \infty$, we have

$$(x_n - u_n) \rightarrow 0 \text{ as } n \rightarrow \infty$$

Since (I-J)C is closed, $0 \in (I-J)C$. Hence there is a point $x \in C$ such that $x \in J(x)$.

THEOREM 2.2. Let C be a nonempty weakly closed star-shaped subset of a Banach space X which satisfies Opial's condition. Let $J: C \to 2^C$ be a compact valued nonexpansive type mapping and let $J(C) \subseteq M$ for some weakly compact subset M of X, then J has a fixed point.

PROOF. As we have shown in the proof of Theorem 2.1, there exists a sequence $\{x_n\}$ in C such that

$$y_n = x_n - u_n \rightarrow 0 \text{ as } n \rightarrow \infty, u_n \in J(x_n)$$

Since the sequence $\{x_n - y_n\} \subset M$ and M is weakly compact, we can find a weakly convergent subsequence $\{x_m - y_m\}$ of $\{x_n - y_n\}$. Let $z = w - \lim_m (x_m - y_m)$. Clearly $z \in M$. Since $y_m \to 0$, it follows that $z = w - \lim_m x_m \in C$ because C is weakly closed.

Now for each $m \ge 1, x_m - y_m = u_m \in J(x_m)$ and J being a nonexpansive type map, there is $v_m \in J(z)$ such that

$$||x_m - (y_m + v_m)|| \le ||x_m - z||.$$

Since $\{v_m\}$ is contained in the compact set J(z), there is a subsequence of $\{v_m\}$, also denoted by $\{v_m\}$, converging to $v \in J(z)$. Therefore

$$y_m + v_m \rightarrow v$$
 as $m \rightarrow \infty$.

It follows that

$$\lim_{m} \inf \|x_{m} - v\| \leq \lim_{m} \inf \|x_{m} - z\|.$$

Since $x_m \rightarrow z$ weakly, using the Opial's condition, we have $z = v \in J(z)$.

COROLLARY 2.3. Let C be a nonempty closed convex subset of a reflexive Banach space X satisfying the Opial's condition. If J(C) is bounded, then each compact valued nonexpansive type map $J: C \rightarrow 2^C$ has a fixed point.

COROLLARY 2.4. Let C be a nonempty closed convex subset of a Hilbert space H. If J(C) is bounded, then each compact valued nonexpansive type map $J: C \rightarrow 2^C$ has a fixed point.

THEOREM 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $J: C \rightarrow 2^C$ be a compact-valued nonexpansive type map and J(C) bounded. Assume

$$J_{n}(x) = t_{n}J(x) + (1 - t_{n})x_{0},$$

where $0 < t_n < 1, t_n \rightarrow 1$ and x_0 is an arbitrary point in C. If $x_n \in J_n(x_n)$, then $\{x_n\}$ converges

strongly to a fixed point of J.

PROOF. Since $\{x_n\}$ is bounded, there is a weakly convergence subsequence of $\{x_n\}$. We denote the subsequence also by $\{x_n\}$ for convenience. Clearly $z = w - \lim_n x_n \in C$. Moreover, $z \in J(z)$ (see the proof of Theorem 2.2). To show that $\{x_n\}$ converges strongly to z, we note that $x_n \in J_n(x_n)$ and so there is a $u_n \in J(x_n)$ such that

$$x_n = t_n u_n + (1 - t_n) x_0.$$

For convenience we can take $x_0 = 0$ because otherwise the similar arguments can be used. Note: $x_0 \in C$ and $u_n \in J(x_n) \subset C$ imply $||u_n - x_0||$ is bounded and so

$$||x_n - u_n|| = |t_n - 1| ||u_n - x_0|| \to 0 \text{ as } t_n \to 1.$$

But then

$$\begin{split} \| \, z - x_n / t_n \, \|^{\, 2} &= \, \| \, z - u_n \, \|^{\, 2} \\ &\leq \, \| \, z - x_n \, \|^{\, 2} + \, \| \, x_n - u_n \, \|^{\, 2} + \, 2 < z - x_n, x_n - u_n > \end{split}$$

It further implies that

$$\lim_{n \to \infty} \| z - x_n / t_n \|^2 \le \lim_{n \to \infty} \| z - x_n \|^2.$$

So there is a positive integer N such that

$$|| z - x_n/t_n ||^2 \le || z - x_n ||^2, \qquad n \ge N,$$

hence

$$t_n^2 \parallel z \parallel^2 + \parallel x_n \parallel^2 - 2 \ t_n < z, x_n > \leq t_n^2 \left[\parallel z \parallel^2 + \parallel x_n \parallel^2 - 2 < z, x_n > \right].$$

and so

$$\| x_n \|^2 \le \frac{2t_n}{1+t_n} < z, x_n > \ \le \ < z, x_n > \ .$$

Thus

$$||x_n|| \le \langle z, \frac{x_n}{||x_n||} \rangle \le ||z|| ||\frac{x_n}{||x_n||}|| = ||z||.$$

Now

$$\| z \|^{2} \geq \| x_{n} \|^{2} = \| x_{n} - z + z \|^{2}$$
$$= \| x_{n} = z \|^{2} + \| z \|^{2} + 2 < x_{n} - z, z >$$

which gives $||x_n - z|| \to 0$ as $n \to \infty$.

REMARK. Theorem 2.5 includes the result of Browder [3] and contains a special case of Singh and Watson [15].

3. K-MULTIVALUED MAPPINGS.

Let C be a nonempty subset of a normed linear space X. We say a mapping $J: C \to 2^C$ is Kmultivalued if for each $x \in C$, $u_x \in J(x)$ there is a $u_y \in J(y)$ for all $y \in C$ such that

 $|| u_x - u_y || \le \frac{1}{2} \{ || x - u_x || + || y - u_y || \}.$

Clearly this notion generalizes the usual concept of K-mapping [9, 10].

THEOREM 3.1. Let C be a nonempty subset of a normed linear space X. Let $J: C \rightarrow 2^X$ be a K-multivalued mapping. Suppose

$$\sup_{x \in A} F(x, Jx) < \frac{1}{2}d(A)$$

for every closed J-invariant star-shaped subset A of C with nonzero diameter. If there exists a minimal closed J-invariant star-shaped subset M of C such that the image of its star-centre is a singleton set, then J has a unique fixed point.

PROOF. If d(M) = 0, then the point in M is a fixed point of J. Suppose d(M) > 0. Let x_0 be a star-centre of M so that

$$\{tx + (1-t)x_0 : 0 \le t \le 1\} \subset M$$

for each $x \in M$. Let $J(x_0) = \{u_{x_0}\}$. Since J is a K-multivalued mapping, for each $x \in M$ and each $u \in J(x)$,

$$\begin{split} \| u - u_{x_0} \| &\leq \frac{1}{2} \{ \| x - u \| + \| x_0 - u_{x_0} \| \} \\ &\leq \frac{1}{2} \{ \sup_{x \in M} F(x, Jx) + \sup_{x \in M} F(x, Jx) \} \\ &\leq \sup_{x \in M} F(x, Jx) = \nu \qquad (say). \end{split}$$

Thus J(M) is contained in a closed sphere S with centre u_{x_0} and radius ν . Clearly $M \cap S$ is a closed J-invariant star-shaped subset of C. By minimality of M, we have $M \subset S$ and so for each $x \in M$, $|| u - u_{x_0} || \le \nu$.

$$M' = \{y \in M : \frac{1}{2} || x - y || \le \nu\}.$$

Clearly M' is a nonempty closed subset of M and $u_{x_0} \in M'$. If $y \in M'$ and $v \in J(y) \subset M$, then for each $x \in M$,

$$||x - v|| \le ||x - u_{x_0}|| + ||u_{x_0} - v|| \le 2\nu.$$

This shows that $J(y) \subset M'$. Since y is arbitrary, we have $J(M') \subset M'$. Finally, for $y \in M'$, $x \in M, t \in [0,1]$, we have

$$|| ty + (1-t)u_{x_0} - x || \le t || y - u_{x_0} || + || u_{x_0} - x || \le 2\nu,$$

which implies that $ty + (1-t)u_{x_0} \in M'$, for each $y \in M'$ and $t \in [0,1]$. From our hypothesis we have $d(M') \leq 2\nu < d(M)$, which shows that M' is a proper closed *J*-invariant star-shaped subset of *M*. This contradicts the minimality of *M* and the uniqueness of the fixed point is easily established.

THEOREM 3.2. Let C, A and J be as in Theorem 3.1. Suppose

$$\sup_{x \in A} F(x, J(x)) < \frac{1}{2n} d(A).$$
(3.2.1)

If there exists a minimal closed J-invariant star-shaped subset M of C, then J has a unique fixed point.

PROOF. As before, if d(M) = 0, then the point in M is a fixed point of J. Suppose d(M) > 0 and let x_0 be the star-centre of M. Since M is J-invariant and J is a K-multivalued map, for $x \in M, u \in J(x) \subset M$, there is $v \in J(x_0) \subset M$ such that

$$||u-v|| \le \frac{1}{2} \{ ||x-u|| + ||x_0-v|| \}$$

 $\leq \sup_{x \in M} F(x, J(x)) = \nu \qquad (\text{say, as in Theorem 3.1}).$

Thus, for each $x \in M$, there exist a positive integer n and $v_{x_0} \in J(x_0)$ such that for all

 $w \in J(x), \|w - v_{x_0}\| \le n\nu.$

Hence J(M) is contained in a closed sphere S with centre v_{x_0} and radius $n\nu$. Similarly, as before $M \cap S$ is a closed J-invariant star-shaped subset of C. By minimality of M, it follows that $M \subset S$. Thus for each $x \in M$, $||x - v_{x_0}|| \le n\nu$. If we set

$$M' = \{ y \in M : \frac{1}{2n} \| x - y \| \le \nu \}.$$

then as before M' is a nonempty closed J-invariant star-shaped proper subset of M, which contradicts the minimality of M and the proof follows.

THEOREM 3.3. Let C be a nonempty convex bounded subset of a uniformly convex Banach space X and $J:C\rightarrow 2^X$ a K-multivalued mapping which satisfies the inequality (3.2.1). If C is J-invariant and there exists a minimal closed J-invariant star-shaped subset M of C, then for any arbitrary point x_0 of C, the sequence $\{x_n\}$ generated from x_0 by

$$x_{n+1} = \frac{x_n + u_n}{2}, u_n \in J(x_n),$$

converges strongly to the fixed point of J.

PROOF. The existence of the fixed point of J in C is given by Theorem 3.2. Let $w \in C$ and $w \in J(w)$. Since C is convex and J-invariant, $x_n \in C$ and by definition of J there is a $u_n \in J(x_n) \subset C$ such that

$$\|w - u_n\| \le \frac{1}{2} \|x_n - u_n\| \le \frac{1}{2} \|x_n - w\| + \|w - u_n\|],$$
(3.3.1)

which shows that for all $n \ge 1$, $||w - u_n|| \le ||w - x_n||$.

Consider the sequence $\{u_n - x_n\}$. Two cases arise:

CASE I. There exists an $\epsilon > 0$ such that $||u_n - x_n|| \ge \epsilon$ for all n > N. Then

 $||(w-x_n)-(w-u_n)|| = ||u_n-x_n|| \ge \epsilon.$

Since X is uniformly convex, we have

$$\begin{split} \| w - x_{n+1} \| &\leq \frac{1}{2} \left[\| w - x_n \| + \| w - u_n \| \right] \\ &\leq \delta \max \left\{ \| w - x_n \|, \| w - u_n | \right\}, 0 < \delta < 1, n > N. \end{split}$$

As C is bounded, so are $\{\|w - x_n\|\}$ and $\{\|w - u_n\|\}$ and hence using the inequality (3.3.1), we have

$$||w - x_{n+1}|| \le \delta |w - x_n||, 0 < \delta < 1, n > N.$$

Therefore, $\{ \| w - x_n \| \}, n > N$, is a monotonic decreasing sequence tending to zero and so $\{x_n\}$ converges to $w \in J(w)$.

CASE II. There exists a sequence of integers $\{n_k\}$ such that

$$\lim_{k \to \infty} \| u_{n_k} - x_{n_k} \| = 0.$$

Since

$$||w - u_{n_k}|| \le \frac{1}{2} ||u_{n_k} - x_{n_k}||,$$

we have $\lim_{k\to\infty} u_{n_k} = w$ and $\lim_{k\to\infty} x_{n_k} = w$. and

which implies $\lim_{n\to\infty}\,x_n=w\in J(w).$

ACKNOWLEDGEMENT. The first author is grateful to NAHE for a grant Under National Collaboration Programme. The second author's research was partially supported by an NSERC grant.

REFERENCES

- 1. BEG, I. & AZAM, A., Fixed points of asymptotically regular multivalued mappings, J. Austral. Math. Soc. (Series A, to appear).
- BROWDER, F.E., Non-expansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. 54 (1965), 1041-1044.
- 3. BROWDER, F.E., Convergence of approximates to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82-90.
- 4. DOTSON, W.G., JR., Fixed point theorems for nonexpansive mappings on star-shaped subsets of Banach spaces, J. London Math. Soc. 4 (1972), 408-410.
- 5. HUSAIN, T. & TARAFDAR, E., Fixed point theorems for multivalued mappings of nonexpansive type, Yokohama Math. J. 28 (1980), 1-6.
- 6. HUSAIN, T. & LATIF, A., Fixed points of multivalued nonexpansive maps I, Math. Japonica 33 (1988), 385-391.
- HUSAIN, T. & LATIF, A., Fixed points of multivalued nonexpansive maps II, Internat. J. Math. & Math. Sci. 14 (1991), 421-430.
- KANEKO, H., A report on general contractive type conditions for multivalued mappings, Math. Japonica 33 (1988), 543-550.
- 9. KANNAN, R., Some results on fixed points, Bull. Cal. Math. Soc. 60 (1968), 71-76.
- 10. KANNAN, R., Some results on fixed points II, Amer. Math. Monthly 76 (1969), 405-408.
- 11. KANNAN, R., Some results on fixed points III, Fund. Math. LXX (1971), 169-177.
- 12. KIRK, W.A., A fixed point theorem for nonexpansive mappings which do not increase distance, Amer. Math. Monthly 72 (1965), 1004-1006.
- LAMIDOZO, L., Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc., 38 (1973), 285-292.
- 14. OPIAL, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- SINGH, S.P. & WATSON, B., On approximating fixed points, Proc. of Symposia in Pure Math. 45 (1986), 393-395.