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ABSTRACT. Some fixed point theorems for nonexpansive type and K-multivalued mappings
are proved. Also the strong convergence of sequences of iterates of multivalued type maps is
established.

KEY WORDS AND PHRASES. Normed spaces, contractive type, nonexpansive type, K-
multivalued maps and fixed points.

1991 AMS SUBJECT CLASSIFICATION CODES. 47H04, 47H10, 54H25.

1. INTRODUCTION.
A single valued selfmap of a metric space (X,d) is called contractive if
d(f(z), f(y)) < hd(z,y) for all z,y in X and for a fixed number h,0 < h < 1. If

d(f(2), f(y) < d(=,y), (1.1)

then f is known as a single valued nonexpansive mapping. A classical theorem (also known as
the Contraction Principle) asserts that each contractive self-map of a complete metric space has
a unique fixed point. It is clear that in general a nonexpansive self-mapping of a complete metric
space need not have a fixed point. However, for such mappings defined on convex sets in a
Banach space, some interesting fixed point results have been obtained by Browder [2] and Kirk
[12].

The notion of contractiveness and nonexpansiveness for multivalued maps has been extended
in several ways and some fixed points of such multivalued functions have also been established.
See, for example, [1], [8], [13].

The second author and Tarafdar [5] introduced the notion of a nonexpansive type

multivalued map and proved a fixed point theorem on compact intervals of the real line, which
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has been extended by Husain and Latif ([6], [7]) in several directions.
Kannan ([9], [10]) has proved some fixed point theorems for single valued self-mappings f of

a metric space (X, d) satisfying the property:

d(f(z), f(v)) S% {d(z. f(2)) +d(y, f(v))}- (1.2)
We shall call a mapping satisfying (1.2) a K-mapping in the sequel. It is known [10] that

conditions (1.1) and (1.2) are independent. Kannan [11] proves some fixed point theorems for K-
mappings on certain subsets of Banach spaces.

In this paper, we prove some fixed point theorems (see section 2) for nonexpansive type
multivalued maps which extend results in {7] and include the result of Dotson [4]. Section 3 deals
with the notion of K-multivalued mappings which is a generalization of K-mappings and we
prove some fixed point results for such mappings.

We recall the following notions needed in the sequel.

Let C be a nonempty subset of a metric space (X,d). A multivalued map J:C—2%
(nonempty subsets of X) is called contractive type (7] if for all z € C,u, € J(z) there is a
u, € J(y) for all y € C such that

() < b d(z,y)

for a fixed real number h,0 <h < 1. This notion clearly generalizes the usual concept of

contractive maps [7]. Further, if in the above inequality we have

d(u,,u,) < d(z,y)

then J is called a nonexpansive type map. An element z € C is called a fixed point of J if
z € J(x).
A Banach space X is said to satisfy Opial’s condition [14] if for each z € X and for each

sequence {z,} weakly convergent to z, the inequality

tim inf | cu—y | >lm inf |20~z |
holds for all z#y. Every Hilbert space satisfies Opial’s condition [14] and so does each
[,(1<p<oo)
A subset C of a linear space X is said to be star-shaped if there is a z, € C such that
{tr+ (1 —t)z:0 <t <1} CC for each z € C. The element x, is called a star-centre for C. The
class of star-shaped subsets of X includes convex subsets as a proper subclass. We denote

d(C)=sup |lz—y] and F(z,C)=sup |z—y]|. We know:
z,y€C yeC

THEOREM 1.1 [7]. Let C be a nonempty closed subset of a complete metric space (X,d).
Then each closed-valued contractive type multivalued mapping J: C—2€ has a fixed point.

THEOREM 1.2 [7]. Let C be a nonempty weakly compact convex subset of a Banach space
X which satisfies Opial’s condition. Then each compact-valued nonexpansive type multivalued
mapping J: C—2 has a fixed point.
2. NONEXPANSIVE TYPE MULTIVALUED MAPS.

Now we extend Theorem 1.2. But first, we show

THEOREM 2.1. Let C be a nonempty closed star-shaped subset of a Banach space X and
J:C—2€ a compact-valued nonexpansive type multivalued mapping. If J(C) is bounded and
(I = J)C is closed, then J has a fixed point.

PROOF. Consider a sequence of positive numbers {t,} converging to 1 and 0 < ¢, < 1 for all
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n>1. Let z, be a start-centre of C. For each n > 1, define the multivalued mapping J, of C
into 2¢ by setting:

Jn(‘t) = t"J(il‘) + (1 - tn)‘zO
= {t,u+ (1 —t,)zgu € J(x)}
For each n > 1,J, is a closed valued contractive type multivalued mapping. Therefore, Theorem

1.1 implies that for each n > 1, there exists a z,, € C such that «,, € J,(z). From the definition of
J(z), there is a u, € J(z,), n > 1 such that

z, = tyu, + (1 —t,)z,.
and so
Iy — U, = (l - tn)($0 - un)'

Since J(C) is bounded, due to the fact that t,—1 as n—oo, we have

(2, — u,)—0 as n—oo.

Since (I — J)C is closed, 0 € (I — J)C. Hence there is a point z € C such that z € J(z).

THEOREM 2.2. Let C be a nonempty weakly closed star-shaped subset of a Banach space
X which satisfies Opial’s condition. Let J:C—2C be a compact valued nonexpansive type
mapping and let J(C) C M for some weakly compact subset M of X, then J has a fixed point.

PROOF. As we have shown in the proof of Theorem 2.1, there exists a sequence {z,} in C
such that

Yp = T, — u,—0 as n—oo,u, € J(z,).

Since the sequence {z, —y,} C M and M is weakly compact, we can find a weakly convergent
subsequence {z,, —y,} of {z, —y,}. Let z=w-— lz;zn (T — Ym)- Clearly z € M. Since y,,—0, it
follows that z = w — lz"zln z,, € C because C is weakly closed.

Now for each m > 1,z,, — y,, = u,, € J(z,,) and J being a nonexpansive type map, there is
v,, € J(z) such that

I Zm = (Um +vm) | S ll2m— 2]l

Since {v,,} is contained in the compact set J(z), there is a subsequence of {v,,}, also denoted

by {v,.}, converging to v € J(z). Therefore
Ym + V=V 88 M—00.
It follows that
lim inf ||z, —v || <lim infllz,—z]-

Since z,,—z weakly, using the Opial’s condition, we have z = v € J(z).

COROLLARY 2.3. Let C be a nonempty closed convex subset of a reflexive Banach space
X satisfying the Opial’s condition. If J(C) is bounded, then each compact valued nonexpansive
type map J:C—2C has a fixed point.

COROLLARY 2.4. Let C be a nonempty closed convex subset of a Hilbert space H. If
J(C) is bounded, then each compact valued nonexpansive type map J:C—2C has a fixed point.

THEOREM 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
J:C—2° be a compact-valued nonexpansive type map and J(C) bounded. Assume

J"(I) = th(CE) + (1 - tn)"?o’

where 0 <t, <1,t,—1 and z, is an arbitrary point in C. If z, € J,(z,), then {z,} converges
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strongly to a fixed point of .J.

PROOF. Since {r,} is bounded, there is a weakly conveigence subsequence of {zr,}. We
denote the subsequence also by {r,} for convenience. Clearly z =w —lmnr, € C. Moreover,
z € J(2) (see the proof of Theorem 2.2). To show that {r,} converges'strongly to z, we note that
z, € J,(z,) and so there is a u, € J(r,) such that

I, = tau, +(1-1t,)z,.
For convenience we can take r, = 0 because otherwise the similar arguments can be used. Note:

7o € C and u, € J(z,) C C imply ||u, — 14| is bounded and so

“‘rﬂ—uﬂ“ = ltn_ 1| ”un_‘TO” —0 as tn_"l
But then

IIZ—.‘IZ"/t"”2= ”z—un”2
< ”Z—I"”2+ ”In_un“2+2<2—xm‘ln_un>'
It further implies that

lim |z =za/ty |2 <lim ||z =2, ]|%

So there is a positive integer N such that

”z—zn/tnnzgllz_zn||27 nsz
hence
tallzl?+ 2l =2t <zz,> <GB [z + lzalI*-2< 2,2, > ]
and so
t
laull? < o< 22, > < <22,
n
Thus
T T
.|l £ <z2,—2=> < ||z|| I+l = I| = || -
leall < <pZ2p> < el g2l = 1=
Now
=1 2 lzall?= llza—z+2]|?

=llza=z"+ lIzlI°+2< 20— 22>
which gives ||z, — z || =0 as n—oo.
REMARK. Theorem 2.5 includes the result of Browder [3] and contains a special case of
Singh and Watson [15].
3. K-MULTIVALUED MAPPINGS.
Let C be a nonempty subset of a normed linear space X. We say a mapping J:C—2° is K-
multivalued if for each z € C, u, € J(x) there is a u, € J(y) for all y € C such that

lue—u, | S3{Iz—ull + ly—u, ).

Clearly this notion generalizes the usual concept of K-mapping [9, 10].
THEOREM 3.1. Let C be a nonempty subset of a normed linear space X. Let J:C—2X be
a K-multivalued mapping. Suppose

sup F(z,Jz)< %d(A)
z€A
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for every closed J-invariant star-shaped subset A of C with nonzero diameter. If there exists a
minimal closed J-invariant star-shaped subset M of C such that the image of its star-centre is a

singleton set, then J has a unique fixed point.
PROOF. If d(M) =0, then the point in M is a fixed point of J. Suppose d(M) > 0. Let z,
be a star-centre of M so that
{tr+(1-t)ag0<t<1}CcM
for each z € M. Let J(z,) = {u‘o}’ Since J is a K-multivalued mapping, for each £ € M and
each u € J(z),
=g | <3 {le—ull + llzo—ug I}

<s{sup F(z,Jz)+sup F(z,Jz)}
TeEM TeM

DI

<sup F(z,Jz)=v (say).
reM

Thus J(M) is contained in a closed sphere S with centre Uz and radius v. Clearly MNS is a
closed J-invariant star-shaped subset of C. By minimality of M, we have M C S and so for each
ze M, flu—u, || <v.
Define

M ={yeM: 1 |z—y| <v}
Clearly M' is a nonempty closed subset of M and u, € M'. Ifye M' and v € J(y) C M, then for

eachz e M,
le=vll < flz—ug || + lluz, vl <2

This shows that J(y) C M'. Since y is arbitrary, we have J(M')C M'. Finally, for y € M’
z €M, t€0,1], we have

Ity + (=g =zl <tlly—ug | + luzy— 2l <20,

which implies that ty + (1 -t)u,0 € M', for each y € M' and t €[0,1]. From our hypothesis we
have d(M') < 2v < d(M), which shows that M’ is a proper closed J-invariant star-shaped subset
of M. This contradicts the minimality of M and the uniqueness of the fixed point is easily
established.

THEOREM 3.2. Let C, A and J be as in Theorem 3.1. Suppose

sup F(z,J(2)) < d(A). (3.2.1)
€A

If there exists a minimal closed J-invariant star-shaped subset M of C, then J has a unique fixed

point.
PROOF. As before, if d(M)=0, then the point in M is a fixed point of J. Suppose
d(M) > 0 and let z, be the star-centre of M. Since M is J-invariant and J is a K-multivalued

map, for z € M,u € J(z) C M, there is v € J(x,) C M such that

lu—vll  <Hlz—ull + -0}

<sup F(z,J(z))=v (say, as in Theorem 3.1).
reM

Thus, for each z € M, there exist a positive integer n and v,oeJ(zo) such that for all



434 A. LATIF, T. HUSAIN AND I. BEG

w € J(z), [|w—v, I <nv.
Hence J(M) is contained in a closed sphere S with centre Ve and radius nv. Similarly, as before
MNS is a closed J-invariant star-shaped subset of C. By minimality of M, it follows that
M CS. Thus foreachz e M, || T -0, I <nv.
If we set

M ={y€ Mg llr =yl <v},

then as before M' is a nonempty closed J-invariant star-shaped proper subset of M, which
contradicts the minimality of M and the proof follows.

THEOREM 3.3. Let C be a nonempty convex bounded subset of a uniformly convex
Banach space X and J:C—2% a K-multivalued mapping which satisfies the inequality (3.2.1). If
C is J-invariant and there exists a minimal closed J-invariant star-shaped subset M of C, then

for any arbitrary point z, of C, the sequence {z,} generated from z, by

Tpny1 = D) 7un€J(zn)»

converges strongly to the fixed point of J.

PROOF. The existence of the fixed point of J in C is given by Theorem 3.2. Let we C
and w € J(w). Since C is convex and J-invariant, z, € C and by definition of J there is a
u, € J(z,) C C such that

lw—u,ll <320l <HNoa—wll + w—u, ], (33.1)

which shows that forall n > 1, |lw—u,|| < |w—=z,].
Consider the sequence {u, — z,}. Two cases arise:
CASE I. There exists an € > 0 such that ||u,—z,| >eforall n > N. Then

”(w_‘rn)_(w_un)” = ”un—'zn“ 2 €.

Since X is uniformly convex, we have

lw=2mpr | <ENw—z,ll + 0= u,]l]
<bmaz {|w-=z,]|,|lv-u,] },0<éd§<1l,n>N.

As C is bounded, so are {||w—=z,|} and {||w—u,]|} and hence using the inequality
(3.3.1), we have
lw—z,4q]| <6|lw—2,],0<é<1,n>N.

Therefore, {||w—z,]|| },n > N, is a monotonic decreasing sequence tending to zero and so {z,}
converges to w € J(w).
CASE II. There exists a sequence of integers {n;} such that

£Z7Z° II unk - ‘rnk ” =0.

Since 1
PR R EEr
we have iz_rgo U,, = w and iz_vzgo T, =W
and
z,tu
o fw—2npall = o= 22F" ) < Jlw—z,].
which implies lim z,, = w € J(w).
n—oo
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