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ABSTRACT. A class of generalized functions called transformable Boehmians contains a

proper subspace that can be identified with the class of Laplace transformable distributions.

In this note, we establish some Abelian theorems for transformable Boehmians.
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1. INTRODUCTION AND PRELIMINARIES

The Laplace transform has recently been extended to a class of generalized functions

called transformable Boehmians [1]. The object of this note is to present some Abelian

theorems of the initial type for transformable Boehmians. Such theorems relate the

behavior of a transformable Boehmian at zero to the behavior of its transform at irtfinity.

Our notation is the same as that used in [1]. Let C be a subset of the real line tL The

space of all continuous complex-valued functions on will be denoted by C(C).
Throughout this note it will be assumed that if Q=(a,b) then a<0 and b>0. The space of all
functions feC(R) such that f(t)=0 for t<0 will be denoted by C+(R). The support of a

continuous function f, denoted by supp f, is the complement of the largest open set on

which f is zero.
The convolution product of two functions f,geC+(R) is given by

(f*g)(t) If(t-u) g(u) du.
"0
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A sequence of continuous nonnegative functions {6n will be called a delta sequence if

(i) 6n(t)
dt 1 for n=1,2,... and (ii) supp 6nC [0,En], En-0 as n-. (n>0).

A pair of sequences (fn,6n) is called a quotient of sequences if fneC+(R) for n=1,2

{6n} is a delta sequence, and fk*6m fm*6k for all k and m. Two quotients of sequences

(fn,6n) and (gn,q0n) are said to be equivalent if fk*q0m=gm*6k for all k and m. A

straightforward calculation shows that this is an equivalence relation. The equivalence
classes are called Boehmians. The space of all Boehmians will be denoted by f3 and a

fn
typical element of will be written as x

6n

By defining addition, multiplication, and scalar multiplication, on f3, i.e.

fn gn (fn* q0 n + gn* gn) fn gn fn*gn
and o. where o is a--+ , _----,

*q0 6 q0 6n, q0 6 n6n qn 6n n n n n

complex number, 3 becomes a convolution algebra.
6n

Since the Boehmian nn corresponds to the Dirac delta distribution, we denote it by 6.

(n)
6 k

Moreover, the nth derivative of 6 is given by the formula Dn6 6 (n) where {6 n}6k
is any infinitely differentiable delta sequence. In general, the nth derivative of xef3 is

given by Dnx=x* 6(n).
By the translation operator on C+(R), we mean the operator "r d’ d real, such that

fn
(’ d0(t) f(t-d). The translation operator can be extended to an element x nn f3 by

"rdfn
"dX= 6n

DEFINITION 1.1. Let Ct be an open subset of R. A Boehmian x is said to be equal to a
continuous function f on C, denoted by x=f on O, if there exists a’ delta sequence {6n such

that X*6nC(R for all n and X*6n-.f uniformly on compact subsets of Q as n-, oo.

Two Boehmians x and y are said to be equal on an open set C, denoted by x=y on O, if

x-y=0 on O.
The support of x3, written supp x, is the complement of the largest open set on which

x is zero. For example, given any delta sequence {6n} and E>0, 6n(t)-.0 uniformly for

tl>E as n-* oo. Thus, supp Dn6 {0} for n=0,1,2

fn
For each x nn 3, it is not difficult to show that for each n

supp fn G supp x + supp n
For other results concerning Boehmians see [1], [2], and [3].

(1.1)
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2. TRANSFORMABLE BOEHMIANS

A Boehmian x is said to be transformable if there exists a delta sequence {6n and a

normegative number cx such that x*6neC+(R for all n and x*6n O(et) as t-.oo for all

n. The space of all transformable Boehmians will be denoted by 3 L.

If feC+(R) such that f(t) O(eCt) as t-.oo for some real number , then the Laplace

transform of f is given by

F(s) L[f](s) f0 e-st f(t) dt for Re s>o,.

Throughout this note s will denote a complex variable, while or c will denote real

variables.

Now, for x3L where x* 6nC+(R) and x*6n O(ect) as t-.oo for all n, the Laplace

Transform L[x](s)=x-(s) of x is defined by the equation L[x](s)L[6n](S) L[x* 6n](S) for all n.

It can be shown [1] that the space of transformable distributions L+ [4] is a proper

subspace of 3L
We state without proof the following theorem.

THEOREM 2.1. For x,ye3L, if X,(s) and LJ(s) are the Laplace transforms of x and y

respectively, then:
i. L [x+y](s) x-(s) + IJ(s).
2. L[otx](s) cx-(s), c a complex number.

3. L [Dnxl(s) sty(s).
4. L[x*yl(s) X(s)tJ(s).
5. L[’rdX](S) e-ds(s), d a real number.

6. If x-(s) 0, then x=0.

The next theorem will be needed in the proof of an Abelian theorem (Theorem 3.2) in

the next section. Also, since the Laplace transform of a Boehmian is an analytic function

in some half-plane [1], Theorem 2.2 gives a necessary condition for an analytic function to

be the Laplace transform of a Boehmian.

THEOREM 2.2. Let xe3L. For each k and E>0,

fn
PROOF. Letx =nn e 3L" We may assume that fn6C(R) for all n. For, if {q;n is an

fn* q;n
infinitely differentiable delta sequence that is, q; n6C (R) for all n), then x and

6n*q n

fn* q;n6C (R) for all n.

Assume that supp 6n c_ [0,an] for all n, where an-.0 as n-. oo. Now, by the Mean Value
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Theorem for Integrals, for each n there exists an (which depends on n and c) such that

0<<an and L[6n](C f0e-Ct6n(t)dt e-C 06n(t)dt e-(3 > e-an(3

Hence, given an E>0, we may pick m such that 0<am<E. Then,

< eamC L[fm](C) < eC L[fm](C)Ix(a)l
[6m1(O)

Also, since fmC(R), for each nonnegative integer k

ckL[fm](C) O(1) as c

Hence, (2.1) and (2.2) give

e-caakL[xl(a) O(1) as a 4oo.

(2.1)

(2.2)

(2.3)
The proof is completed by observing that (2.3) is valid for all 8>0 and all nonnegative

integers k.

THEOREM 2.3. Suppose that F(s) is an analytic function in some half-plane Re s >

and for some integer k and all >0 that ske-Sp(s) O(1) as s-, oo, Re s > c. Then, there
exists x3L such that L[x](s)=F(s), Re s >

PROOF. Suppose that for some integer k and all E>0

ske-SF(s) O(1) as s-, oo, Re s > cx. (2.4)
1

Let {6n} be an infinitely differentiable delta sequence. Define q0n(t 6n(t- )for

n=1,2 Thus, {q0 n is an infinitely differentiable delta sequence and for each integer k

and all n

skeS/nL[q0n](S) O(1) as s-, oo, Re s > or. (2.5)
M

Hence, by (2.4) and (2.5), for each n there exists an M such that L[q0n](s)F(s) < I- for

1 f + ioo
eStL[q0n](S)F(s) ds, where y>cx.Re s > cx. For n=1,2,..., define fn(t) -.,y

Then, for each n, fn is a continuous function such that: supp fn c [0,oo), fn(t) O(eY t)
as too, and L[fn](S L[q0n](S)F(s), Re s >

Now, L [fn*q0 ml L[fn] L[q0m] (L[q0n]F)L[q0m] (L[q0m]F)L[q0 n] L[fm] L [q0 n]
fnL [fro*q0 n] for all n and m. Thus, fn*q0 m fm*q0 n for all n and m. Let x f3L.q0 n

Hence L [x](s) F(s), Re s >

Although the condition in the previous theorem is sufficient for an analytic function to

be the Laplace transform of a Boehmian, as the next example demonstrates it is not

necessary.

EXAMPLE 2.4. The transformable Boehmian x

X(s) cosh- [11.

E
n=0

6(n)
(2ni! has Laplace transform
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REMARK 2.5. It is not difficult to show that the transform of a Boehmian is an

analytic function in some half-plane [1]. Hence, Theorem 2.2 provides a necessary
condition for an analytic function to be the Laplace transform of some transformable

Boehmian. Thus, the entire function g(s) es is not the transform of a Boehmian. But, for
each c>1 there is a transformable Boehmian xct such that Xc (s) is an entire function and

for each E>0, Xo(s)=O(exp s (E +(1/c55), as Isl [1] (where this relation does not

hold for any E<0). An interesting open problem is to characterize the class of
transformable Boehmians by their Laplace transforms.

3. INITIAL VALUE THEOREMS

In classical analysis there are many different types of Abelian theorems (see [5] and [6]).
Abelian theorems of the final type relate the behavior of a function at infinity to the
behavior of its transform at zero, while Abelian theorems of the initial type relate the

behavior of a function at zero to the behavior of its transform at infinity. It is both

interesting and important to extend such theorems to certain classes of generalized
functions (see [4], [7], [8], and [9]). For example, Zemanian [4] has extended two Abelian

theorems to transformable distributions. In [1] we presented an Abelian theorem of the

final type for transformable Boehmians. In this section we will establish three Abelian

theorems of the initial type (Theorems 3.2, 3.5, and 3.8).

A real-valued function mC+[a,b] (C+[a,b] C+(R) n C[a,b]) is said to be in Y, if m does

not change sign in [a,b] and [L[m](o)] -1 o(oneo(O)) as (3--, (for some integer n).

DEFINITION 3.1. x,yef3L. x--y as t-*0+ if there exist f,geC+[a,b], meY,, and an integer

n such that x=Dnf and y=Dng on some neighborhood of [a,b], Lim
f(t)

t.,0+ m(t--- 1, and

Lim g(t)

t_,0+ m(t) 1.

THEOREM 3.2. Suppose x,y13L such that x--y as t-,0+. Then Lim ,(o)
1.

o4oo y(o)

PROOF. x can be written in the form

x Dnf + w, (3.1)
where WL and supp w c [c,o) (c>0). Now, by a classical Abelian theorem (see [5]),

C[Dnf](a) [f](a)
1 as o-.oo.

on[m](o) [m](o)
Since y can also be written in the form of (3.1), to complete the proof it suffices to show

that
[w](o)

0 as c-* oo. (3.2)on,[m](o)
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fn
Now, w nn and by (1.1) supp fn c [c,oo) for all n. For each n, let gne C(R) be defined

gn
by "cgn=fn and let z nn e f3 L. Thus w=’o.z. Then, (for some y>0),

L[w](a) e-CL[z]()=O(e-YL[z](c)) aso-, (3.3)o.nL[m](o.)- onL[m](o)

By applying Theorem 2.2 to (3.3) we obtain (3.2), and hence the proof is complete.

EXAMPLE 3.3. Let xe3L such that x=6 on some neighborhood of [a,b]. Since D2t=6,

x-6 as t-*0+ and hence Lim X(o) 1.

REMARK 3.4. In Definition 3.1, the condition that the functions f, g, and m be

continuous may be relaxed. We need only require that f,g,mLl(a,b). For if fLl(a,b) and

x=Dnf in some neighborhood of [a,b], then x=Dn+l(*f) in that neighborhood, where . is
f(t)

the Heaviside function ((t)=l for t>0 and zero otherwise). Also, if- 1 as t-*0+, then

(J*f)(t) 1 as t-,0+.
(.*m)(t)

THEOREM 3.5. If xef3L such that, for some fLl(a,b), x=Dnf on some neighborhood of

X-n+l(o)f(t) 0+ cI
[a,b] and7 cx as t-* (cx complex and X real, X >-1), then

o-*oo F(X+I)
=cxLim

(where F(X+I) Ioe-ttX dt).

PROOF. If o0, use Theorem 3.2 with x=c’lx and y=DntX. Suppose c =0. Now, x can

be written in the form x=Dnf+w, where we3L and supp wC [o,, ) (>0). Thus,

O X-n+Ix,(o) o X+IF(o) o X’n+lL[w](o)
F(X+I) F(X+I)

+
F(X+I)

(3.4)

By a classical Abelian theorem (see [5]), the first term on the right hand side of (3.4) tends to

zero (as o ). By using a similar argument as in the proof of Theorem 3.2, the second
term on the right hand side of (3.4) also tends to zero (as o--, ). This completes the proof.

EXAMPLE 3.6. Let x=cxtX +
X6(n)

(2n)!
n=0

x=ctX on [0, E/2), Theorem 3.5 yields

where E>0, X>-I, and c is complex). Since
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n

Lim
o k+1)(o "6(n) Z g6(k)

o 1-(X+I)
c (2n)---- 6-Lim

(2k)! (see [1]).
n k=0

REMARK 3.7. Example 3.6 maybe used to show that Theorem 3.5 cannot be extended

to a half-plane. Indeed, let x + \i\su(n=0,oo,\f( " rt6(n),(2n)!)) Then, x in [0, 1) and

1 L[’ n -ns -nScosh- (see [1]).X(s) - + (2n)! s2
+ e (2n)! s2

+ e

n=0 n=O
Moreover, for Re s y 0 > 0, there exist positive constants M and a such that

s2e-l-lScosh > M Is aea/Is I_, ass o. Thus, s2(s) 1 + sae-rtScosh---. as

s-, Re s y 0 > 0. Hence, in order to extend Theorem 3.5 (i.e. not restricting o to the real

axis) we will require some restrictions.

Let . denote the set of all Boehmians x such that for each E>0, e-ESX(s) O(1) as s

for arg s < t < n/2.

THEOREM 3.8. Suppose xf3L such that x=Dnf + "dy (d>0, n an integer) for some

fC+[a,b] and y].. If \a( ,Lim, t-,0+ \f(f(t),tX ot (o, complex and X real, X>-I) then

Lim sX-n+lx(s)
s-, V(X+I)

=c, largsl <@ < n/2.

sX-n+l,,(s) sX+lF(s) sX_n+1PROOF.
F(X+I) F(X+I-- + L[:dY](S)"

sX+lF(s)
Since f(t)-,c as t-*0+, by a classical Abelian theorem (see [6]), ii-i c as s-oX

arg s I<@ < n/2. Thus to complete the proof we need only to show that

sX-n+IL[’dY](S)-,0 as s-,, arg s <;<rt/2. (3.5)

Now, for some positive constants M and a

IsX-n+lL[’dy](s) <M Re s k-n+le-aRe s, arg s <;<n/2.

Since iRe s X-n+le-aRe s., 0 as s--, for arg s I<;<rt/2, (3.5) is verified and thus the

proof is established.

sX+l(s)
EXAMPLE 3.9. Let x be as in Example 3.6. Then by Theorem 3.8, Lim

s-.oo F(X+l)

largsl <q; <n/2.
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REMARK 3.10. For transformable distributions, Theorem 3.8 may be stated as follows.
f(t)

If xL+ such that x-Dnf in some neighborhood of [a,b] (fELl(a,b)) and c as t-.0+,

then Lim sX-n+l’(s)
s-zoo 1-(X +1)

c, larg s _< q; < v/2.

This follows by observing that x can be written as x=Dnf + y, where y L+ and

supp y c__ [,) (>0). Thus, yE. (see [4]).

Since L+ is a subspace of f3 L, the Abelian theorem of the initial type for L+ proved in [4]

(Theorem 8.6-2) is a special case of Theorem 3.5. It can be shown [1] that the transformable
1

Boehmian x in Remark 3.7 has Laplace transform ),,(s) -5 + e-rtScosh’-, which shows
s"

that (i) Theorem 3.5 extends the theorem of Zemanian (since x is not a transformable

distribution); and (ii) Theorem 3.8 cannot be extended to a half- plane (see Remark 3.7).
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