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ABSTRACT. In this paper, we investigate M(L) in case £ is a normal lattice of subsets of X
and we extend the results to £,, L,-lattices of subsets of X , such that £, C £, and L, separates
2,. We define the outer measures y' and p” which prove very useful in proving some of the

above results.
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1. INTRODUCTION.

Let X be an abstract set and £ a lattice of subsets of X. If £ is a normal lattice, then in
previous papers consequences pertaining to I(L£)-the set of non-trivial finitely additive zero-one
valued measures on A(L), the algebra generated by £ have been investigated.

In the first part of this paper, we extend these results to M(L), the set of non-trivial, non-
negative finite and finitely additive measures on A(£). We extend these considerations to L1485
lattices of subsets of X such that £, C £, and £, separates £,.

If p € M(L) then an auxiliary finitely subadditive outer measure p' is associated with it and
proves very useful in proving some of the above results. This along with another outer measure
" is considered in detail in the second part of the paper. It is shown that although x4’ might not
be a regular finitely subadditive outer measure, it is still true that an arbitrary set E C X is p'-
measurable if and only if it splits just X additively. We note that if u € I(L) then 4 is clearly
regular, but this need not be the case for p € M(L).

We begin with some standard background material (see also [1] and [5]) for the reader’s
convenience. Some related material can be found in [2], [3], and [4].

2. BACKGROUND AND NOTATIONS.

Let X be an abstract set and £ a lattice of subsets of X. It is assumed that 6, X € £. The
lattice £ is called normal if for any L,,L,€ £ with L;NL, =8 there exist Ly, L, €L with
L,c Ly, L,CcLj and LiNL) =8 (where prime denotes complement). £ is almost countably
compact if p € In(L") implies p € I,(L).

We give now some measure terminology. M(L) denotes the set of finite valued bounded
finitely additive measures on A(£). Without loss of generality may assume throughout that all

measures are non-negative. A measure g € M(L) is called:
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a-smooth on L if for all sequences {L,} of sets of £ with L, |8, u(L,)—0.
o-smooth on A(L) if for all sequences {A,} of sets of A(L) with 4,16, u(A,)—0.
2-regular if for any A € A(L), u(A) = sup{u(L)/L C A,L € L}.

We denote by Mp(L) the set of L-regular measures of M(L); M (L) the set of o-smooth
measures on £ of M(L); M?(L) the set of o-smooth measures on A(L) of M(L); MF(L) the set of
L-regular measures of M7(L).

In addition, I(L),Ig(£),I,(£),I°(L) and I%(L) are the subsets of the corresponding M'’s
which consist of the non-trivial zero-one valued measures.

Finally, for £, C £, two lattices of subsets of X, L, separates £, if A,B€ L, and ANB =46
implies there exist C,D € L, such that ACC,BC Dand CND=4.

3. NORMAL LATTICES.

THEOREM 1. Let £ be normal and let g€ M(L), v € Mg(L) with p<v on L and
w(X) = v(X). Then v(L')=sup{w(T )T c 'L, T €1).

PROOF. Let L€ L and €>0. Since v € Mpg(L), there exists A C L',A € L such that
v(L')— € < v(A). Since £ is normal, there exist B,C € £ such that AC B’ C C C L'. Hence,

Y(A) < W(B") < W(B') < u(C) < C) < w(L')

and then v(L')—pu(C)<v(L)—v(A)<e, ie., v(L')< p(C)+e, € arbitrary small. Therefore,
w(L') = sup{w(I ),I cL'\T e1}.

DEFINITION 1. Let 4 € M(2) and define 4/(E) = inf{ £ u(L!),E c L_'le:, LeL,ECX)}
=inf{u(l'),ECL'\Le i} -

THEOREM 2. Suppose £ is normal and let p € M(L),r € Mp(L) with p<v on L and
w(X)=v(X). Then p<v=1v'=p'on 4.

PROOF. If Ac £, u(A) < p(L') for all AC L',L €L. Therefore pu(A) < p'(A) =inf p(L'),
AcL'ie,p<p ond. Forve Mp(L)we have for any A € L:

v(A) = inf (L)/AC I',L € £} = /(4)

ie,v=v on L. p<v on £ and p(X)=y(X) implies 4 >v on 2. Hence v'(A) =infv(L')
<infu(L') = p'(A),AC L ie, V' <p' on L Toshow that v’ =y’ on £, suppose that v/ # p' on
L. Then there exists L € £ such that /(L) < p'(L). Since v € M (), there exists A€ £,L C A’
such that »(A') — e < »(L) = V(L)

2 being normal, there exist C,D€ L such that LCC'CDCA' and p'(L)<p'(C')
< p(C") < u(D). But u(D) < v(D) < y(A") < V(L) +e < p'(L) + € < u(D) + ¢, contradiction.

THEOREM 3. Let £ be normal and let pe M (L), v € Mp(L) with pu<v on L and
w(X) =v(X). Then ve M, (L)

PROOF. Let L, | 6,L,€ L. Since v € Mg(L) and € M (L) with u<v on £, y(L') = sup
u(z ),Z cLLT €4 Given &>0, there exist L,c Ll L, el such that v(L}) < u(L,)+ %
May assume L, | and since L, C L | 6 it follows L, | 6. Since pe M (L),u(L,) < 5 all
n > N(g). Hence v(Ll) < e for all n > N(e), i.e., v € M (L').

THEOREM 4. Suppose £ is normal and let p € M(L),v;,v; € Mp(L) with p <y, on &,
p<vyon L and u(X) = v(X) =vy(X). Then v, =v,.

PROOF. By Theorem 2,

/

p<vy=vi=4, p<v,=vh=p on L.
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Hence v, = v, = 4!’

THEOREM 5. Let £ be almost countably compact and let 4 € M g(L'). Then u € M (L).

PROOF. Suppose p ¢ M, (L). Then there exists A, | 6,A, € L with u(A,)+0. Since
i€ Mp(L"), there exists B, € £,A, D B, and 0+pu(A,) ~ u(B'). May assume B!, # 6 all n and
B! |0, hence {B.} has the finite intersection property. Therefore there exists A € I z(L') such that
MB!)=1 all n. Since 4,D Bl it follows M\A,)=1 all n. But A4, | 6; then A ¢ I (L),
contradiction since £ is almost countably compact.

THEOREM 6. Let £, C £, and suppose that £, separates £,. Let u € Mg(L,) and consider
the extension v € M p(L,). Then:

(a) vis &,-regular on £).

(b) If p€ M%(L,) then v € M _(L)).

(c) v is unique.

PROOF.

(a) Define p(L,)=inf u(L}), L,C L}, L,€ £, L, €L,. For any L\ D L, we have v(L,)
<inf p(L}) = p,(L,), hence v < p, on £,. Suppose that v(L,) < u,(L,) for some L, € £,. Since
v € Mp(L,), there exists L, € £,, L, C L}) such that »(L}) < v(L,) + €. By separation, there exist
L,L,e2, such that L,cL,Ll,cL, and L,NL, =0 Then L,cL,cLicLy and
u(Ly) < v(Ly) = p(Ly) < v(Lh) < p,(L;) + €, € arbitrary small. It follows u(L,) < p,(L,). But
L, C L, implies p,(L,) < p(L,), contradiction. Hence we must have v =y, on £, or v = y, on £).

(b) Let L, €25, L! | 6. v(LL)=p(L,)=sup{u(Ll,),L,Cc L, L,eL}. Since L’ | 0 and
L,c L', may assume L, | . Given &> 0, there exists L, C L/, such that v(L!)—¢ < u(L,,).
u € M%(L,) implies u(L,)—0, hence v(L,)—0, i.e., v € M, (L}).

(c) Suppose for p € M%(L,) there are two extensions v,,v, € M g(4,). By (a) v,,v,, are
£,-regular on £} i.e.,

vi(Ly) = sup p(Ly), Ly C Ly, Ly € L), Ly € L,

vo(Ly) = sup p(Ly), Ly C Ly, Ly € £,, L, € L,

Hence v,(L}) = v,(L}) and then v, = v, on £} which implies v, = v, on L,.

THEOREM 7. Let £, C £, and suppose £, separates £,. Let p € M(L,),v € Mg(L,) with
p<von & and p(X)=v(X). Consider the extensions 7 € M(‘LZ)’T/A(L,) =p and A € Mg(L,),
A/a(.!.l) =v. Then7<Aon &,

PROOF. Let L, €L,, arbitrary. Since A is L,-regular, given € > 0, there exists L, € L,,
L, C L, such that \(L}) < A\(L,)+¢. By separation, there exists L, L, € £, such that L, C L,,
L,c L, and L,nL, =6. Therefore, we have L, C L, C L} c L} and 7(L;) < T/A(Ll)(Ll) = pu(L,)
<y(L) < (Il = '\/1(1-1)(2"‘) <MLL < ML) +¢ and A=v on £, L}; ¢ arbitrary small implies
7(Ly) £ MLy). L, arbitrary in £, shows that 7 < ) on &,.

THEOREM 8. Let £ be normal and almost countably compact. Then M g(L) C M (L))

PROOF. Let p€ Mp(L). Then p<pe Mp(L") on £ and p(X) = p(X). Hence p<pon L
and p € M (L) since £ is almost countably compact. But p € M, (L) and py € My(L) and p <y
on £, therefore, £ being normal it follows u € M (1').

4. SOME FINITELY SUBADDITIVE OUTER MEASURES.
DEFINITION 2. y defined on P(X) is a finitely subadditive outer measure if:

(a) g is nondecreasing;

() (0 E)< & uE), for any Ey, By, - - B, € X;
1=1 =
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() wu(@)=0

Clearly, g/, as defined in Section 3, is a finitely subadditive outer measure.
Let ¥, be the set of all u'-measurable sets, where E is measurable with respect to y' if for any
ACX, W(A)=p'(ANE)+ 4 (ANE")

THEOREM 9. EC ¥, if and only if p/(A") > u'(A'NE)+ /(A'NE") for all A€ L.

PROOF.

(a) If ECY¥,, then the relation clearly holds.

(b) Let B be arbitrary in X,B C A, A€ L. We have:

W(A) = W(A) 2 W(A'NE) + W(A'NE) 2 W(BNE)+ 4(BN E),

by assumption and g’ being monotone. Since this is true for any B C A',A € £, it follows
uW(B)> ' (BNE)+ ' (BNE'). By the definition of 4’ as an outer measure, we have for
B=(BNEU(BNE":y(B) < g(BNE)+ y'(BNE"). Therefore, 4/(B) = y'(BNE)+ 4/ (BN E",
B arbitrary in X, i.e., E € .‘f”,.

DEFINITION 3. Let p€e M(L) and define the inner measure p,(E)= supp(L),
LCE,Let,ECX.

THEOREM 10. The following statements are true:

(a) wu(X)=p(L)+4u(L'),LeL.

(b)  wX)=p(L)+p(L)

PROOF. Clear.

DEFINITION 4. Let p€ My(L),EC X and define 4"(E) = in f‘if]p(Lf),E cUr,Ler
Let ¥, be the set of y'-measurable sets, where E is measurable with respect to W if for any
AC Xp"(A) = W"(ANE) + W"(AN E).

THEOREM 11. 4" is an outer measure.

PROOF. Clear.

THEOREM 12. E €9,,,if and only if u"(A") > u"(A' N E) + p"(A' N E") for all A€ L.

PROOF.

(a) If E€9¥,, then clearly u"(A") > p"(A'NE) + p"(A'N E') for A€ L.

(b) Let B be arbitrary set in X and let B C'[_.lef, L,€ 2 all i. Then, since p" <y on £,

we have

£ we)= £ wwh> E WLnE)+ L0 E) = § w"(LinE)+

B E) 2w 8 inB)+ (0 L0 E) 2 W(BNE)+ W (BNE),

This holds for all B, B C {J L', therefore u"(B) = in,.fiil;t(Lf) > u"(BNE)+ p"(BN E') and since
B was arbitrary in X it follows E SN2 -

THEOREM 13. Let p€ M(L),EC X. E€ ¥, iff p(E) = p/(E).

PROOF. Suppose E€9,. Then u(X)=p/'(E')+4'(E). By Theorem 10, u(X)= u(E"
+ 4/ (E), so we have p'(E')=p,(E"). Hence u(X)—p'(E")=pu(X)—p,(E') and then
u(E) = W/ (E). Conversely, suppose u,(E)= y/(E). Then, given € > 0, there exists LetICE
and p(I) +5> u(E). Also, be definition of i, there exists T €2 such that I’ D EDL and
w(I') < p(E)+5 Now, let A'€2. Then p(A'NE)<p(A'NL)=puA")+uL)-p(AUL)
< (A + p(E) +§— w(AUL) < w(A") + p(D) + §+5 - (AUL) = (A'nL)+e. Now E'CLI),
hence A'NE'C A'NI. Thus p/(A'NE)+p(A'NEY<w(A'NL)+e+p(ANI)=wA' NL)
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+e+u(A'NL) = pu(A") + <, ¢ arbitrary.
Therefore, p'(A'NE) + //(A'NE") < u(A) = p'(A"),A' et ie,E€ P,

1Cs g

<

1.

THEOREM 14. Let u € M_(L) and define p”(E) as above. Then

(a)  W"(X)=p(X)

(b) u<u"ond.

PROOF.

(a) I p"(X)# pu(X), there exists L, € £,: = 1,2, - - - such that X = U L' and

1=1

(L) < p(X). But u(L] = lim ilu(Lf) >tmp( O L), ULTand () L' € ' and
1= n 1=1 =1 1=1
. L't U L' = X. Therefore, since s € M (L) we have lim pu( |} L) = u(X), contradiction.
n 1=1

1=1

(b)  Suppose there exists L € £ such that p(L) > p""(L). Then p"(X) < p'(L) + p"(L')
w"(LY+ (L") < p(L) + p(L") = w(X) which contradicts part (a) of the theorem.
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