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ABSTRACT. In this paper, we introduce weighted graph bundles and study their characteristic
polynomial. In particular, we show that the characteristic polynomial of a weighted K, (K ,)-
bundles over a weighted graph T, can be expressed as a product of characteristic polynomials two
weighted graphs whose underlying graphs are I' As an application, we compute the signature of a

link whose corresponding weighted graph is a double covering of that of a given link.
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1. INTRODUCTION.

Let T' be a simple graph with vertex set V(I') and edge set E(I'). Let R be the field of real
numbers. A weighted graph is a pair T, = (I',w), where I is a graph and w:V(I')UE(T')—>R is a
function. We call I' the underlying graph of I', and w the weight function of T,. In particular, if
w(E(T)) C {1, — 1} and w(V(T)) = {0}, then we call T, a signed graph.

Let V(I')={uy, - - -,u,}. The adjacency matriz of T, is an nxn matrix A(T,)=(q,,)
defined as follows:

w(e) if e =uu, € E(T) and ¢ # j,

a, = wu) ifi=j

0 otherwise,

for1<¢j3<n.
The characteristic polynomial P(T;)\) = |A — A(T,)| of the adjacency matrix A(T,) is
called the characteristic polynomial of the weighted graph T',. A root of P(T,;])) is called an

eigenvalue of T,

Note that if the weight function £ of T is defined by L(e)= —1 for e€ E(I') and
2(u) = deg(u) for u € V(T'), where deg(u) denotes the degree of u, that is, the number of edges
incident to u, then the weighted adjacency matrix A(T;) is called the Laplacian matriz of I. We
call £ the Laplacian function of I'. The number of spanning trees of a connected graph I is the
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value of any cofactor of A(T,) [Matrir tree theorem] and is equal to the value % [Trz0 . where
A runs through all non-zero eigenvalues of A(Ty)  Morcover. the cigenvalues of A(I'y) may be
used to calculate the radius of gyration of a Gaussian molecule. For more applications of the
cigenvalues of A(T'y). the reader is suggested to refer [3].

2. WEIGHTED GRAPH BUNDLES.

First. we introduce a weighted graph bundle. Every edge of a graph T gives rise to a pait of
oppositely directed edges. We denote the set of directed edges of T' by D(T). By €' we mean
the reverse edge to an edge e € D(T'). For any finite group G. a G-woltage assignment of T is a
function ¢: D(T')—G such that é(e ') =¢(c)~! for all ¢ € D(I'). We denote the set of all G-
voltage assignments of I' by C!(T;G). Let .\ be another graph and let ¢ € C'(I'; Aut(A)). where
Aut(A) is the group of all graph automoiphisms of A. Now, we construct a graph I' x A as
follows: V(I'x®A)=V(T)xV(A). Two vertices (u;,v;) and (u,,v,) are adjacent in T'x®A if
either u,u, € D(T) and v, = ¢(uyu,)vy or vy = u, and vyv, € E(A). We call T'x®A the A-bundle
over T' associated with ¢ and the natural map p®:T x ®A—T the bundle projection. We also call T
and A the base and the fibre of T'x ®A, respectively. Note that the map p® maps vertices to
vertices but an image of an edge can be either an edge or a vertex. If A is the complement I, of
the complete graph K, of n vertices, then every A-bundle over I is an n-fold covering graph of T

Let T, and A, be two weighted graphs and let ¢ € C'(I'; Aut(A)). We define the product of
and w with respect to ¢,w x ®u, as follows:

(1)  For each vertex (u,v) of V(T x ®A), (w x ®u)(u,v) = w(u) + (v).

(2) For each edge € = (uy,v;)(uy,v,) of E(T' x ®A),

w(uyuy)  if uyuy, € D(T) and vy = @(u uy)vy
(wx?u)e) =
pu(rye,)  if uy = u, and vyv, € E(T).

We call the weighted graph (I‘x"A)wx% the A -bundle over ', associated with ¢. Briefly,
we call it a weighted graph bundle.
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FIGURE 1. The graphs C,x *K, and (C, x *°K,) o
wx®u

3. CHARACTERISTIC POLYNOMIALS.

In this section, we give a computation for the characteristic polynomial of a weighted graph
bundle T' x ®A, where A is either complete graph K, of two vertices or its complement K, and
study their related topics. Note that Aut(K,) = Aut(K,) = 2Z,.

For a given graph I' with weight function w and for a ¢ € C'(T;Z,), we define a new weight

function w® on T as follows:
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(1) Foree€ E(T),

w"’(e):{w(l) 'if ole) =1
—w(e) ifoe)= -1

(2) For ve V(I), w?(v) = w(v).

A subgraph of T is called an elementary configuration if its components are either complete
graph K, or K, or a cycle C,(m > 3). We dcnote by E| the set of all elementary configurations
of I having k vertices. In [3], the characteristic polynomial of a weighted graph T', is given as
follows:

PTN) = 3 afT N,

k=0
where

o)=Y (=12 T w@w) [ we? I wle)
SEE, wuel(s) e€lgS) e€C(S)

In the above equation, symbols have the following meaning: &(S) is the number of components
of S, C(S) the set of all cycles, C,(m>3), in S, and I, (S)Ig(S)) is the set of all isolated
vertices (edges) in S. Moreover, the product over empty index set is defined to be 1.

For a fixed voltage assignment ¢ € C'(T; Z,), we denote by E,_, the set of edges of T such
that ¢(e)= —1, ie, E4_, ={e€ E(T):¢(e) = —1}. Let T(E,_,) be the edge subgraph of T
induced by E,_, having weight zero in vertices. If ', is a weighted graph, then the weight
function of its subgraph S is the restriction of w on S.

THEOREM 1. Let K, be a constant weighted graph, say u(v)=c for v € K,. Then, for
each ¢ € CY(T; Z,), we have

PTX*K3), o)) = P~ OP(T X = o).
PROOF. Let A(T,) be the adjacency matrix of I',, and let A(Fw't) the adjacency matrix of
I’wd,. Then we have
A(Fw) = A((F\(E¢ - 1))w) + A(F(Ed: - 1)w)1
A(T_g) = A{(T\(Ey_1)).) - A(T(E, - 1))
Let V(I'x K ,) = {(u,1), - - -, (up, 1), (g, = 1), - - -, (ttn, —1)}. If is not difficult to show that
c 0
AT, 0 ) =| AT - ATE, )+ - ||o[3 )]
0 c

+(A(F(E¢_1)w))®[(1) (1)}

Let M be a regular matrix of order 2 satisfying
1o 1 |10
M [1 O}M_{O—l}

X = AT,) - A(N(Ey_))+| ©.

Put

Y = A(T(Ey_4).)-
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Then
(I@Al”)A«FxﬁﬁhxﬂﬂlmAU

x4y o0

10 X-Y
c 0

AT+ € 0

0 c

- c 0 |
0 AT )+ ©

0 c

Since |I®@M Y)Y (I®M)| =1 and

.PI—A«FxﬁﬁLX%M=“M¥%h8M’UA(GX¢KQ”%)U®AHH

we have our theorem. u]
THEOREM 2. Let K, =(K,,p) be a weighted graph having constant weight on vertices.
“

Then, for each ¢ € C(I';Z,), we have

P((F X ¢I(2)w b, ,\) =Pl A—c,— c,)P(Fwd,; A—c,+c.),

where ¢, = u(v,) = u(v,) for the vertices v,,v, and ¢, = p(e) for the edge e in K,.
PROOF. Clearly, we have

c, 0
AOxKS), 0,) = AT - A(TE )+ > | e]g 1]
0 <,
c. 0
| ArE )+ o ||o])d]
0 Ce

where ¢, = p(v;) = p(v,) and ¢, = p(e) for the edge e in K,. Let M be a regular matrix of order 2

satisfying
201, |10
ek O]M_[O
Then
T@M™) A(Cx?Ky), q,)IOM)
Ce 0
X+Y+| . 0
0 'ce
- c, 0
0 X-Y+| ©
0 Ce
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AT+ Z, 0
0 AT 4)+ 2y

where X and Y are the same matrices as in the proof of Theorem 1 and for : = 1,2,

e, +(—1)"lc, 0
L e+ (=1)T1e,

0 Cu+("1)'_lCeJ

Using method similar to the proof of Theorem 1, we have our theorem. a
Note that for any ¢ € C'(T;Aut(A)), the Laplacian function of I'x ®A is the product of

Laplacian functions of T' and A with respect to ¢. Clearly, the Laplacian function of the X, is

the zero function; and the Laplacian function of the K, has value 1 and —1 for each of its

vertices and its edge, respectively. We shall denote the Laplacian function of a graph by £ if it

makes no confusion. Then Theorem 1 and Theorem 2 give the following corollary.
COROLLARY 1. For any ¢ € C\(T;Z,),

(1) P((Cx*K;)p50) = PTG NPT, 60).

(2)  P((Tx®Ky)g5)) = P(Ty; \)P(T LA —2) ]

Now, we consider another invariant of weighted graphs called the signature. Since A(T,) is
symmetric, A(T,) can be diagonalized through congruence over R. Let d , denote the number of
positive diagonal entries, and d_ the number of negative diagonal entries. = The signature of a
weighted graph (T,) is defined by o(A(T,)) =d, —d_ and is denoted by o(T,). It is an invariant
for weighted 2-isomorphic graphs (see [7]).

From now on, we will consider the weight function on K, as zero function and the weight
function g on K, as the map defined by p(v) =0 for each v € V(K,) and u(e) = ¢, for the edge e
of K,. Then we can compute the signature of a double covering of I'.

COROLLARY 2. a((I‘ X ‘”?;)wxd,o) =o(T,)+ a(l"wé) for ¢ € CY(T;2,). 0

For convenience, we adapt the following notations. For a real number ¢, a weighted graph
T, and an eigenvalue A of T',,

P(c), ={A<0:A+c>0},

Ple)t ={A>0:A+c>0},

Z(c),={A#0:A+c=0},

N(c); ={A<0:2+¢ <0},

N(e)f ={A>0:A+c<0}.
We also denote the multiplicity of A by m, ().

By using the above notations and Theorem 2, we get the signature of a K,-bundle over T.

COROLLARY 3. For ¢ € CY(T;2,),

(1) ifc, >0, then

a((I‘ X ¢K2)w xd»”) =0o(T,)+o(T 4)
+ (22,\ € p(cc);mw(’\) +m,(0)+ T )¢ Z(Ce)wm“‘(/\))

— (ZEA € N( -Ce) +¢mw¢(A) + mw¢(0) + Z,\ €2Z(- ce) ¢mw¢(A)),
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(2) ife, <0, then
a((l" X d51\'2)‘” . d,“) =o(T,) + a(I"wo)
_(2Z/\ €Nt m (A)+m (0)+ X, ¢ Z(Ce)w'77“'()‘))

+(2>:A€ Plc )y o)+ g(0)+ Tz, d’mwo()\))
o

REMARK. Though the results in this section stated only for a simple graph, it remains true
for any graph.
4. APPLICATIONS TO LINKS.

In a signed graph T, an edge e of T is said to be positive if w(e) = 1 and negative otherwise.
For a signed graph ', we define a new weight function &of I' by & (e) = w(e) for any edge
e€l, and T (u,) = E'J‘= 1, # 7 G,y Where q,, is the number of positive edges minus the number
of negative edges which have two end vertices u, and u,. Given a knot or link L in R3, we
project it into R? so that each crossing point has proper double crossing. The image of L is called
a link (or knot) diagram of L, and we do not distinguish between a diagram and the image of L.

We may assume without loss of generality that a link diagram T of L intersects itself
transversely and has only finitely many crossings. The link diaéra.m T divides R? into finitely
many domains, which will be classified as shaded or unshaded. No two shaded or unshaded
domains have an edge in common. We now construct a signed planar graph T, from T as

follows: take a point v, from each unshaded domain D,. These points form the set of vertices

V(T,) of T,. If the boundaries of D, and D, intersect k-times, say, crossing at Cp Cop i Cey

then we form multiple edges €€yt reg, OB R? with common end vertices v, and v,, where

each edge e, passes through a crossing ¢, , for m=1,2,- - -,k. To define the weight of an
m m

edge, first, we define the index €(c) to each crossing ¢ of the link diagram as in Figure 2. To each
edge of I' passes through exactly one crossing, say ¢, of T , the weight w(e) will be defined as
w(e).= €(c). (See Figure 3).

€le)-- 1l €lc)=-1

FIGURE 2. The index €(c).
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FIGURE 3. The correspondence between I and rw(i )-
The resulting signed planar is called the graph of a link with réspect to T and is denoted by

Fw(f ). The signed planar graph Fu(’i ) depends not only on T but also on shading. Conversely,
given a signed planar graph I'y, one can construct uniquely the link diagram L(’Z o) of a link so
that T (L(T 4)) = T,.

N\ /
AN /

wle) =1 w(c)= -1
FIGURE 4. The index w(c).

Suppose that we are given an oriented link L. The orientation of L induces the orientation
of a diagram T . We then define the second index w(c), called the twist or writhe at each
crossing ¢ as show in Figure 4. We now need the third index 5,(c) at crossing c. Let T bean
oriented diagram and p shading on T. Let 1,(€) = W(€),(cyu(cy Where § denotes Kronecker’s
delta. We define n,,('Z ) = Ln,(c), where the summation runs over all crossing in T . The index
np(’l\: ) depends not only on the shading p but also on the orientation of T . The following Lemma
can be found in ([7], [4]).

LEMMA 1. The signature o(L) of a link L is o(L) = a(P(Z ) — n,(f ). 0

Let T 1 and T ; be link diagrams of L, and L,, respectively. The link L, is called a double
covering of the link L, if T (T ;) is a double covering of T(L ,) as weighted graphs and it can be
extended to a branched covering on RZ. Let ¢ be a voltage assignment in Cl(l"w(’l\: ); Z,) such
that ¢(e) = —1 for some edge e and ¢(e) =1 otherwise, then l"w(z Yx*K, is a planar double

covering of rw(Z ) of which the corresponding link is a double covering of L.

Therefore, one can construct the double covering link diagram 'E(l"w(’l\: )% *K,) Oi L.

Moreover, we can give an orientation on T (T (T )x*K,) so that the covering map from L to
T (Fw(z )x ¢K,) preserves the orientation. We have 7,(L (T (T )x*K,)) = 2n,(L ) (see Figure

5).
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AUTAL) x* K7)) = -4 rui)yx* K,

Vi~
% 7
@ — &
T

wL) = -2 Tu(L)

FIGURE 5. Covering graph and covering link.

Therefore, by using Lemma 1 and Corollary 2, we get the following theorem.
THEOREM 3. For any oriented link diagram I,

oL (C(L)x*K;) = o(T(L ) + (T _y(T )~ 20,(T )
for each ¢ € C'(T; Z,) such that ¢(e) = — 1 for some edge e € T w('z ) and ¢(e) = 1 otherwise.
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