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ABSTRACT. In this paper we introduce the notions of separability and Lindel6f in approach spaces
and investigate their behaviour under products and subspaces.
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INTRODUCTION.
In [5], the measure of non-compactness which was introduced by K. Kuratowski in [8], was put

into the framework of so-called approach spaces, rephrased there as "measure of compactnesss".
Approach spaces, as explained in detail in [6] provide us with a common supercategory of the

categories TOP of topological spaces with continuous maps, and p-MET of extended metric

spaces and non-expansive maps. The advantage of doing this was not only that Kuratowski’s rather

peculiar measure of non-compactness was thus put into a canonical setting, and that this setting

allowed for a unified treatment of compactness for topological spaces and of total boundedness for

metric spaces, but also that it was thus possible to prove some fundamental relationships between

the measure of compactness of a family of spaces and their productspace.
In further study of approach spaces, and their application, especially to the analytical study

of spaces of probability measures [7], [1], it turns out to be indispensable also to have at our disposal

a mechanism to measure the deviation an approach space may have from being Lindelhf and from

being separable. The purpose of this paper is to introduce such canonical measures and to study
their basic properties. We pay particular attention to subspaces and products of metric spaces.

2 PRELIMINARIES.
We shall use the following symbols R+ := [0, oo[, R. :=]0, oo[ and 15.+ := [0, oo]. If A C X

then E)A stands for the function X 15,.+ taking the value 0 in points of A and oo elsewhere.
We put an (respectively T for an increasing (respectively a strictly increasing) function, system,

sequence or whatever. We shall also use the symbols and ] respectively for strict decreasing

respectively decreasing functions, system, sequence or whatever.

We shall recall some definitions from [5] and [6]. "An eztended pseudo-quasi-metric (shortly
extended p-q-metric space) is a pair (X,d) where d X x X ---+ + fulfils:

(M1) {d= 0} D/kx := ((,)1 e x}
(M2) d fulfils the triangle inequality.
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The map d is then called an eztended pseudo-quasi-metric (shortly extended-p-q-metric). Other
properties d may fulfil are:

(M3) d is symmetric

(M4) {d 0} C Ax
(MS) d is finite.

If d fulfils also (M3) we drop "quasi-" ("q-"), if it fulfils (M4) we drop "pseudo-" ("p-") and if
it fulfils (MS) we drop "extended". If A C X then d(A):= sup{d(a, b)[a, b A} stands for the
diameter of A.

A map X 2x f+ is called a distance if it fulfils

(DI) VA 2x,vz X:z A :=> (z, A) 0
(D2) Vz X: (z,O)=
(D3) VA, B 2x,vz X 5(x,A) A 5(z, B) 5(z,A U B)
(D4) VA x, V. X,V + (, A) (, A(’)) + hr

A collection (O(x)),ex of ideals in is called an approach system if it fulfils

(A1) Vz X, V4 (I,(z) 4(z) 0

(A2) Vz X, V4 1.+x "V,N R_, B@f @(z)"

(A3) Vz X,V (x),VN R, qb’ I-I,ex (:r.),Vz, y X:

’(x)(z) q- ’(z)(y) _> (y) A N.

We shall denote an approach system by ((z)),ex or shortly if no confusion is possible. If is

an approach system then A := (A(z)),ex is called a basis or base for if it fulfils

(B1) Vz X :A(z) is a basis for an ideal

(B2) Yx X: (x)= h(x) where:

h() := {1v, N R,q A(a:) + >_ A N}.

Further [6] if is an approach system on X then the map

8:Xx2x +:(x,A) sup inf b(a)

is a distance on X. From 8 a distance on X we can construct the approach system 6 defined by:

,(z) := {IVA c X inf (a) < 8(a, A)}
a.A

(1)

for all x X. Further we have 6. and 8 =.8. A space with an approach system or a

distance is called an approach space.

If (X,) and (X’,’) are approach spaces then a function f: X X’ is called a contraction

if it fulfils any of the following equivalent conditions [6]:
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(C1) Vz ( X,V’ (E ’(/(z)) ’ o f ( (z)
(C2) For any bass A’ for ’: Vz ( X,V’ A’(f(z)) ’ o f (E (z)
(o) w x,v c x ’(/(),/()) < (, ).

Approach spaces and contractions constitute a topological category [6] denoted AP. TOP is

reflectively and coreflectively embedded in AP by:

(X, T) (X,

where the approach system of At(T)is (bT(z))=ex {ulv(z 0, u.s.c, at x} for all z E X.
The associated distance is given by r(z,A) 0 iff z E and 6T(z,A) oo iff z ’ /i for all
z E X, A C X. Given (X, ) IAPI its TOP-coreflection is given by:

(X, T’()) (X, ),

where T’() is the topology determined by the neighborhood system"

N’(@)(z) {{v < e}lv c ,l’,(-),e E R.,z G X}.
T" is left inverse, right adjoint to A,.

We say that the approach space has property P iff the topological bicoreflection of this space
has the topological property P (e.g. compact, LindelSf, ...). Analogously p-q- MET is
bicoreflectively embedded in AP by:

p-q-MET AP

(x,d) (x,
where An(a) is determinded by the approach system (Oa(z)),x with Oa(z) {vlv d(z,.)}
for all z X. In this ce the sociated distance is given by a(z,A) inf,a d(z,a) for all

z X, A C X. Given the approach space X with approach system its p-q- MET-coreflection

is given by"

(X,M()) (X,)

where M(#) is the p- q metric ad by M()(.,u) s,(, {u)). M is of course left

inverse, right adjoint to A.. Approach spaces for which (X x 2x) {0,} are topological [6].
If A is a basis for the approach space (X, #) then:

5(z,A)’= sup inf @(a).

3 MEASURES OF SEPARABILITY AND LINDELOF.
We now introduce the measures of separability and Lindelff:

DEFINITION 3.I If (X, ) is art approach space then we define the measure of LindeIgf

(respectively separability) of (X, ) as

(respectively as

L(X) := sup inf sup inf (z)(z). (2)

S(X) inf supgCz, A)). (3)
A/2((x)) zX

The following result is a straightforward exercise in topology:
LEMMA 3. A topological space X is Lindelb’f iff for every family (V=)=x where V= is a

neighborhood of z there ezists a countable set {z, ln N} such that: U,eN V(z,,) X.
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Further

PROPOSITION 3.3 An approach space X ts separable tff S(X)= O.

Proof. It is clear that S(X)=0 iff we can find an A e 2((x)) such that: sup=ex 6(z, A) 0

iff Vme X- 6(z, A)= 0 iff Vz X.x A. So S(X)=0 iff (X,T(O))is separable.

This result is not true for the Lindelbf measure, as the following example shows.

COUNTEREXAMPLE 3.4 Conszder d< R x R ft whereby d<(a, b) b a zJ" a _< b

and d<(a,b) := oo ira > b. II is easy to see that thzs defines a p- q- MET space on R Its

topologzcal bzcoreflectzon ,s the RHO topology [3]. We now consider the product of this approach

space with ztself. It ,s not hard to see that L(R x R) 0. However since a coreflectwn preserves

products, zt follows from [3] that the space is not Lindel6f

TItEOREM 3.5 For a topologtcal approach space X we have:

Further:

L(X), S(X) {0, oo}.

() (x, -) # s(x)= o
(b) (X, T) zs Lindel6f iff L(X)= 0

(4)

Proof. It is clear that we also have:

L(X) := sup inf sup inf (z)(z) (5)

where A(z)is a basis of ,I,(z). If we take:

A(z)-- {OvlVis an neighborhood of x inT}

then it is clear that L(X) can only have the values 0 or oo. Because S(z, A) can only have the values

0 or oo it is clear that S(X) can only take these values too. To prove (a) we only have to apply 3.3,
and (b) follows easily from 3.2 and expression (5).

In metric spaces we know that separability and Lindelgf coincide. We shall prove that the

measures of separability and Lindel&f also coincide in p-MET

LEMMA 3.6 For the p-q-MET space (X,d) we have:

L(X) sup inf d(y,x) (6)
,:fix yEA

S(X) sup inf d(z,y) (7)
=X yEA

for a certain A 2((x))

Proof. It is clear from the definition that for any A E 2((x))"

L(X) > sup inf d(y,z).
=EX yEA

Further it is clear that for each n E N we can choose a set A,, 2((x)) such that:

sup inf d(y, x) > L(X)
=EX yEA.

And thus"

L(X) sup inf d(y,z)

where A U,eN A,,. The equality for S(X) is shown in a similar way.
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true.

COROLLARY 3.7 For a p-MET space (X,d) we have: L(X) S(X) 1.

In countercxample 5.4 we see that for a general p-q-MET space the previous result is not

COROLLARY 3.8 An eztended pseudometrtc space X is separable iff S(X)=L(X)=O.
It is easy to see that for contractions we have the following:

THEOREM 3.9 For X,X’ E IAPI and f" X X’ a contraction

(a) L(f(X)) <_ L(X)

() s(f(x)) < s(x).
In topological spaces we can state the Lindel6f property by means of filters with the countable

intersection property [3]. We can do the same here for approach spaces. We shall put F(X)
(respectively F,(X)) for the set of filters (respectively the set of filters with the countable intersection

property) and analogously as for a filter we shall say that a base/ of a filter " E F(X) has the

countable intersection property if for all (B,,),,eN 6 B"

Obviously if a filter .T has a base with the countable intersection property then the filter Y
itself has the countable intersection property.

We are now ready to prove the following theorem:
THEOREM 3.10 For (X, 4) e lAP with base (h(z))xex we have:

Proo

L(X) sup inf a.T(z).
YeF(X)xEX

First consider Y 6 2((x)) and put:

The definition of L(X) implies that By O and since f"I,,N By. Bu.y,,, B, {BvlY e 2((x))} is

a base with the countable intersection property. Now consider the filter .T’e "=< Be > Then:

inf aYe(z) inf sup sup inf (x)

E.EX (z)zEX BB. EB

sup inf inf sup inf (z)()

u n n n ()(=)
e.x (=) YE((x)) ,eY =eBr

(x) .
From the arbitrariness of e we deduce that:

sup inf aS(z) >_ L(X).
=eF(X) ,X

Second to prove the other inequality we first prove the’following assertion:

Assertion: For every F Fw(X) and Y 2((x)):

inf sup if (y)(z)_< sup inf (y)(z).
yEY FE zEF =EX
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Indeed put

9(Y) sup inf (y)(z)
FE: EF

then 3Fu E .T" such that Vz E Fu" (y)(z) > g(!/)- e. Because .Y" E F,o(X) we can find z G gy Fu.
Hence,

and thus;

So finally we obtain:

(u)() > 9(u)- ,

inf (v)Cz) > inf 9(V) .
i/(Y i/EY

sup inf (y)(z)>_ inf sup inf (y)(z)- e.
EX I/EY I/Y FE.’EF

Since this is true for every > 0 this proves the assertion.

Now take " F,,,(X), then

inf a-(z) inf sup sup inf’(y)

sup inf sup inf (z)(y)

sup inf inf sup inf (y)(z)

sup inf sup inf (y)Cz) {=sertion}

L(X).

(8)

4 PRODUCTS.
In this section we shall discuss the relations between the measures of LindelSf and separability

of a product space and its component spaces.

REMARK 4.1 Since the projections are contractions it is clear from Theorem 3.9 that the

measures of separability and Lindelb’f of the components are always less than or equal to the cor-

responding measure for the product space. So we only have to prove one equality for each of the

measures.

MEASURE OF LINDELSF.
Since the real line with the right half-open topology is LindelSf and the product with itself is

not LindelSf [3], Theorem 3.5 allows us to conclude that the product of approach spaces can have

measure of LindelSf equal to co while the measures of LindelSf for the components are 0.

MEASURE OF SEPARABILITY.
For topological spaces [2] the product of separable spaces is separable iff the cardinality of

the index set is less than or equal to the continuum. Along the same lines we obtain:

THEOREM ,. For the approach spaces Xi IAPI, I where 1I < I2NI we have:

s(IIx,) up s(z,).
iI I

Proof. Consider the set A, := {ai(n)ln e N} C Xi"

sup sup inf i(a,(n)) < S(Xi) + e.
ziF:X, bi E’lq(:,) hEN

(9)
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Because I]1 < I2NI there exists an injection o" I [0, 11. We shall note K ,,o(I) and C2"710,,1 for

the set of closed intervals with rational endpoints in [0,1]. For each {J:t, J:,..., Ji} C C2[o,q and

n,,...,ni we define the point t(J,,...,J,n,,...,nl) such that t(J,,...,Ji,n,,...,ni)l al(sl)
where s, n, if(l) Js K and st 0 if(l) US=, ISs K. Because the set CZlo., is

clearly countable tl,c set

A {((S,,...,J,,n, ,na)l{S,,J2,...,da} C C2"[o,11 and n,,n2,...,nk E N}

, E 4,(z,)} Then with L {11,l,...,I} for each 3 1,...,/ there exists a set di CZR[0.11:
o(ls) E dj where all Jj can be taken pairwise disjoint. It is clear from Equation 9 that we can find

for each Is a no such that:

,,(%(,s)) < s(x,,) +
It is now clear that the point (J,,...,Jiln,,...,ni) fulfills:

sup C,(pr,(t)) < sup S(X,) + .
/EL,

This theorem cannot be improved. Indeed take ]X] > ]2[ and consider the set N with

the product topology. The set N is clearly a separable topological space but it is well known ([9]
example 103) that N is not separable. From Theorem 3.5 we now conclude that S(N)=0 but

S(N) oo.

5 SUBSPACES OF P-Q-METO* SPACES.
In this section we discuss some properties of the measures of separability and Lindel6f in

p-q-MET spaces, especially for subsets and products.

THEOREM 5.1 For a p-MET space X and Y C X we have:

(a) L(Y) <_ 2L(X)

() s(Y) <_ s(x).

Proo (a) We know that:

L(X) sup inf d(y,z).

for a certain A e 2((x)) and we write A Y {b, ln < inN} and A 91 Y {c,,[n e N} [if
one of the sets is empty or finite we adjust the indexset ]. Suppose that there is a y Y and an

m fi N: infeN d(b,y) > L(X) + l/m, then there exists a c,: d(,y) < L(X) + 1/m. Consider

now the sets:

B, {y Y[ inf d(b,y) > L(X) + 1/m and d(c,,y) < L(X) + 1/m}.

From each non-empty set B,, we choose exactly one y,,.,, if this set is empty choose an element

at random) and consider the set:
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For y E Y two situations can occur. Either inf,N d(b,,,y) < L(X), which gives us infbo d(b,y) <
L(X) or this is not true and then inf,,zN d(b,,,y) > L(X) + l/m, for some m > 0 and so qn E N
d(c,,, y) < L(X) + 1/rrt which implies:

d(y.... y) <_ d(y.... c,) + d(c,,,y) < 2L(X) + 2/m.

Because this is true for every m we have:

(0)

inf d(b,y) < 2L(X).
bfi B

(b) Follows from Corollary 3.7 and (a).

Sometimes we can sharpen our inequalities, as the following theorem shows.
THEOREM 5. For a p-MET space X with an ultrametric d and Y C X we have:

(a) L(Y) < L(X)
() s(r) ’_< s(x).

Proof. Simply note that Equation 10 in the proof of Theorem 5.1 now becomes

d(y.... y) <_ maz(d(y,.,,,,,,c),d(c,y)) <_ L(X) + l/re. (Ii)

For metrics which are not ultrametrics Theorem 5.1 cannot be improved, as the following

counterexamples show.

COUNTEREXAMPLE 5.3 Consider R with the following metric:

d(0, z) d(z,0) 1/2 Vx e R and d(z,y)= l,(y) where z,y e Ro.

Then L(Ro)= but L(R)= 1/2.

COUNTEREXAMPLE 5.4 Consider R with the following pseudo-quasi-metric:

d.(0,:) 1/. a.a d.(:,0)= l- X/- V: e R a.a dC:,u)= I.(U) h.. :,U e

Then L(Ro)= but L(R)= i/n and S(R)= 1In.
So the foregoing results are not true for general p-(q)-MET" spaces.

6 PRODUCTS OF P-Q-MET"’ SPACES.

For p-q- MET" spaces we have:
PROPOSITION 6.1 Let (Xj)iE be an at most countable family of p-q-MET spaces. Then:

L(1-I x) sup L(X).
E.S

Proof. The first inequality follows from Remark 4.1. We now prove the second inequality.

Put X := l]eJ X, and for each Xj we consider Aj countable such that:

L(X) sup inf di(a,x). (12)
z.X$ aqA
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Now put A :=

If J is finite then A is countable and it is clear from equation 12 that"

L(HX,) < sup inf maxd,(%,
jEJ :rEX aEA

_< p (x).

If J is countable we can always take J=N. Let us remark first of all that L(A)=0. Indeed, each

set A has a topological coreflection coarser than the discrete topology, hence the product topology

is coarser than the product of the discrete topologies. But this last product is homeomorfic with

NN, which is LindelSf [9]. Hence the product-topology is also LindelSf which proves L(A)=0.

From equation 12 we know that for every e > 0, E N and z, E X, there exists a, A, such

that d,(a,, z,) <__ L(X,)+ e. Hence:

supd,(a,,z,) < sup L(X,) + .
,EN iEN

In the following we shall consider with each (z,),zj X this (a,),ej A. We now have:

L(H X) _< sup inf sup inf sup di(y,,
jEN K:X_2(N) YE2((x)) zEX I/(Y ,EK(I/)

< sup inf sup inf sup d,(y,,z,)
K:X_,2(N) YE2((a)) qX itEY

< sup inf sup inf sup [diCy,,a,) + d,Ca,, z,)]
K:X2(N) YE2((A)) zEX ItF.Y iF.K(v)

_< p i p in ,up
K:X__,2(N) yE2((a)) aEA uF.Y iF.K(u)

<_ (A + ,p L(X,) + .
F.N

Since the measures of separability and Lindel6f coincide for metric spaces, and the measure of

separability is stable for even some uncountable products. This could also be true for the measure

of Lindelf. Unfortunately this is not the case as the following example shows:
COUNTEREXAMPLE 6.2 We know [9] that ZR is a completely regular non-normal

topological space. From [3] p.15 it then follows that toologica bicoreection
Lindelbf. 0 the oher hand can coider Z ith the Euclidean medic and Za as the product.
t is dear ha L(Z) 0, u e shaft sho ha L(ZR) .
consider in each X a neighborhood V. It clear that for z we hae a finite Kv() such

sup inf sup inf sup d(z,z) < 1.
K:X2(R) y(((zR)) EZR (Y

In particular for Kv X 2(R) we can find Y 2((ZR)) such that for ever7 z ZR there ezists

z Y such that:

sup dj(z,z) < 1.
EKv(o)

Because the only distance in Z smaller than is O, we deduce that: Uer f-leKv. 7rj-(z) ZR.
But this means that ZR (as a topological space) is Lindelb’f which is not the case. Hence L(ZR) > 1.
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REMARK 6.3 If we choose the dtstance function in Z such that the distance between two

dtfferent points is always N, then with the same reasonin9 as above we can prove that L(Zrt) > N
and if we choose a oo-p metric such that the distance is oo for two different points then L(ZR) oo.

We know that for general approach spaces the measure of separability for an uncountable

(larger than the continium) product is not necessarily equal to the supremum of the measures of

separability of its components. For products of p-MET** spaces we have the following counterex-

ample.

COUNTEREXAMPLE 6. Consider a set U with cardinality larger than the continuum.

Then as a product of discrete metric spaces S(2u) 0 iff its topological coreflection is separable.

Since this is not the case [], and (X x 2x) C {0,1} we have S(2u) 1.
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