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ABSTRACT. The notions of strictly extreme and strictly exposed are introduced. Their prop-

erties are discussed, examples are given, and inter-relationships investigated. In particular it is

proved that, for separable normed spaces, the strictly extreme points are just the strictly exposed

points.
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1. INTRODUCTION.
In the sequel, E will denote a Hausdorfl’, locally convex, real linear space with conjugate space

E’. The closure of a subset C of E will be denoted C-, and the convex hull by [C]. For two

points r/and q in E, we adopt the notation

],,q[ {,+(-,) 0<<1};
[,q] {.+(q-) 0_<_<

The fundamental definitions and theorems applied in this paper are contained in [1], [2], and [3].
2. STRICTLY EXTREME POINTS.

Let C be a subset of E. The extreme points of C can be characterized in terms of the cone

c()_={ >o, E, [,,,+,)]cc}.

An extreme point of C is a point r/e C such that -C(r/) N C(r/) {0}.
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DEFINITION 1. A point r of a subset C of E is a strictly extreme point of C if -C(,)- N

c()- {0}.
EXAMPLE 1. The strictly extreme points of closed regions bounded by convex polygons are

the vertices of the polygons.

EXAMPLE 2. A convex set which is locally uniformly convex has no strictly extreme point.

In particular,/.f-spaces for 1 < p < oo have no strictly extreme points in their closed balls.

Other examples will be given below. We presently characterize strictly extreme points in terms

of the supporting hyperplanes of C. For any point r of C, let D(r) denote the intersection of

all closed hyperplanes H through r such that C lies completely in either one or the other of the

closed half-spaces associated with H.
THEOREM 1. Let r be a point of a convex subset C of a real locally convex space E. A

necessary and sufficient condition for r to be a strictly extreme point of C is for D(r) to be just

{}.
PROOF. We begin by demonstrating

. +-c(.)- c(.)- c (i)

Assume false, and consider x not in D(,) with x r e -C(r)- N C(,)-. Then there exists a

closed hyperplane H supporting C passing through , but not x. Let S be the corresponding

closed half-space containing C. Since x is in r + C(r)-, there is a sequence v, in C(r) convergent

to x- . If x were not in S, then + v, would eventually be in the (open) complement of S

this however violates the condition that C is within S. It follows that x must be in S (but not on

its boundary H). Let w, be a sequence in -C() such that + w converges to x. Then + w,

is eventually in SH. Since y is in the boundary of H of S, it follows that ]y -w,, [ is disjoint

from S. But w, is in -C() d so ] -w, [ intersects C: absurd.

We now verify the reverse inclusion:

. + -c(.)- n c(.)- = z(.).

Let x be any point in E such that x r -C(r)- n C(r)-. Since -C(r)- n C(r)- is a closed

convex cone, there exists f E E’ which is non-negative on -C(y)- N C’(r)- but is negative at

x r. If K denotes the kernel of f, then r + K is a closed supporting hyperplane of C, and so

D(r) C r + g. However x is not in r + K since f(x- r) < 0. In particular, x is not in D(r),
which establishes (2). QED

As a corollary to Theorem 1 we deduce a characterization of strictly extreme points of convex

bodies in terms of Minkowski functionals (cf.[4] 16.4). For a real-valued function f defined on

E, we denote the left and right Gateaux derivatives of f at , in the direction d by f$ (r, d) and

f’__(r,d) respectively (cf. [4] 26.4)
COROLLARY. Let C be a convex subset of E with non-void interior. Let r be a boundary

point of C and let q be any point in the interior of C. Define the Minkowski functional f on E by

(i) f(x)=_inf{r>0 (x-q) eq+r(C-q)}forallxeE. Then a necessary and suf-

ficient condition for r to be a strictly extreme point of C is that, for each x E E not lying on the

(unbounded) line determined by r and q.

(ii) f’_ (r/, x q) < f$ (r/,x q).
PROOF. Let F- and F+ be the epigraphs of the functions

E x f’_.(r,x q) and E ) x f’+(r,x q)
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respectively. These are cones ([4) .4.) with F+ c F-. There is a theorem to the eec that

the points (y, ) of F-\F+ are precisely the points (y, h(y)) where h is a continuous atone function

whose half-space {z E: h(z) h()} contains U ([4] 20.4.11). It follows that equation (ii)
holds for a point z E precisely when z D(). QED

EXAMPLE 3. Let (X, ,) be y meure space. Then the extreme points of the closed

unit ball C of the Banach space g(X, ,) e all strictly extreme.

PROOF. Let V be an extreme point of E. As is well known, V must be the I(A) times

the characteristic function a of some meurable set A, no non -null subset of which having

meure less than (A).
Let / be the gauge of C and q the origin of : thus

f(m) llmll =/x Imld/ for all m E.

Let m E E be distinct from the line determined by r/and q and, for each X E denote by

the set {t A: . z(t) < -lk(A)). We have

But either/(A(A)) 0 or/z(A(A)) =/(A) and, in the latter case, m is almost everywhere equal

to some constant value e on A. Thus,

f(7 -I- Am) f(/) (-2\/(A) A. c)./(ACA)) -I- I
\A()

As A tends to 0,/(A(A)) will eventually be 0 and so

x d/

and

x d/.fg(’ z q)
:ffi0)>o}

This implies that

f’_(, q) <_ 0 <_/(, q).

At least one of the values f{teE..z{t)<0} x d/ and f{teE:z(0>0} x d( must be non-zero. It follows

from the Corollary to Theorem 1 that r/is strictly extreme. QED
EXAMPLE 4. Let (X, Ai,/) be any measure space. Then the extreme points of the closed

unit ball C of the Banach space E =_ L(X, Ai,/) are all strictly extreme.

PROOF. In this proof essup will denote "essential supremum", essinf will denote "essential

infimum", and sgn the signum function".

Let r/be an extreme point of E. As is well-known, Ir/I must equal 1 almost everywhere.

Let f be the gauge of C and q the origin of E: thus

f(m) I111- essup I1 for all m E.

Let x E be no scalar multiple of 7, and let A satisfy I1 < 1\1111. For almost all E X we

have

l(t) + . (t)l sgn(r/(t)). (r/Ct) + A.

whence follows that

f(r/-I- Am) f(r/) essup sgn (r/). A.z.
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We have

f’_(rl,x- q) essinf sgn(vT) : and f’_(rl,x q) essup sgn(r/) x.

Since x is not a scalar multiple of r, it follows that ff_ (r, x q) nd f$ (, x q) are distinct. It

follows from the corollary to Theorem 1 that r is strictly extreme. QED

A convex subset C of a linear space E is said to be polyhedral if the intrinsic core icr(C) of C

is nonvoid and the intersection of C with any finite dimensional subspace F of E is a polyhedron

of F.
EXAMPLE 5. Let the convex subset C of the locally convex space E be polyhedral. Then

each extreme point of C is strictly extreme.

PROOF. Assume that r/ is an extreme point of C which is not strictly extreme. Then

-C(})-N C()- contains at least one straight line L through O. Without loss of generality,

we may assume that O E icr(C). Let F denote the two-dimensional linear subspace generated by

L ado. Theno is an extreme point of CleF andLis atangentlineofCNF at / in F. It

follows that C N F is not a polyhedron in F: absurd. QED
The classical Krein-Milman Theorem yields the following:

COROLLARY. Let C be a convex set as in Example 5 above and suppose that C is compact.

Then C is the closed convex hull of its strictly extreme points.

3. STRICTLY EXPOSED POINTS.
Another sharpening of the idea of an extreme point is that of an exposed point: a point

of a subset C of E is exposed if there exists some f E E’ for which f(/ + z) > f(/) for all

z C()\{0}. Obviously an exposed point is an extreme point, but the converse is not generally

true (consider a boundary point on the juncture of a square surmounted by a half-disk). Since

boundary points of a disk are exposed, but not strictly extreme, one might conjecture that the

property of being a strictly extreme point is stronger than that of being exposed. Such is not the

case however, as can be seen by Example 6 in Section 3 below.

THEOREM 2. Let be a point of a convex subset C of a real locally convex space E. A
necessary and suicient condition for /to be strictly exposed is for there to exist a function f E
such that, for any weakly compact subset K of E\{0} which intersects C(}).

(i) inf{fOT + x) x e K fq C()} > f(r/)

PROOF. We first establish the suciency of the condition. Since singletons are weakly com-

pact, it is clear that /is exposed. If /were not strictly exposed there would be a sequence

C(/) convergent to a point x0 C(/)-\{0} such that

lim f(r} + x) f(r/)

But the union of the singleton {x0} with the range of the sequence xn is weakly compact, so this

is not possible.

We now prove the necessity of the condition. Suppose that r/ is strictly exposed and assume

that K is weakly compact containing a sequence xn also in C(/) such that nlim
Then x admits a subnet xa weakly convergent to a point x0 in K. Since C(/) is convex, its closure

coincides with its weak closure and so x0 is in C(W)-, whence follows that f(+x0) ]’(7) :absurd.

QED
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4. THE RELATIONSHIP BETWEEN STRICTLY EXTREME AND STRICTLY EXPOSED

POINTS.

That a strictly exposed point is strictly extreme is evident. The following example shows that

the converse is not generally true, even in the context of Hilbert spaces.

EXAMPLE 6. Let E be any non-separable Hilbert space and let B be a complete orthonormal

subset of E. Let C be the set of all z 6- E such that < z,b >_ 0 for all b 6- B, and let r/ be the

origin of E. It is evident that C C(r/) C(r/)- It is evident as well that r/is an extreme point

of C and so strictly extreme as well. If ]" were as in the definition of strictly exposed point, then

by Riesz’s Theorem, there would exist a 6- E such that ]’(x) =< x,a > for all x 6- E. Since B
is in C, we would have < b, a > > 0 for all b in the uncountable set B absurd. Hence r/ is not

exposed.
In fact r/ is not even exposed when E bears its finest locally convex topology. In this

case we would have ]’(z) > 0 for all x 6- C, but f not necessarily corresponding to an el-

ement a of E via the inner product. In view of the fact that B is uncountable and equal

to the union .J {b 6- B’(b)

_
l\n}, it follows that there is at least one rn 6- _rV such that

{b 6- B" ]’(b) _> l\rn) has a countable infinite subset, say {b)__l. Let x be the point b\n in

H. Since x b\i is in C for each n 6- _a’V, we have
i=1

1-1.rC=) _> f(,,\) >
d=!

17’1,
d=’l "

Letting n grow, we see that ’(z) would have to be infinite: an absurdity.

THEOREM 3. Let ,/be a point of a convex subset C of a separable normed linear space E.
The following statements are pairwise equivalent:

(i) r is a strictly extreme point;

(ii) r is a strictly exposed point.

PROOF. That (ii) implies (i) is trivial, and so we shall deduce (ii) from (i). Let B denote the

unit ball relative to the norm on E.
Let I/6- C(n)-\{0} be arbitrary. Since -C(r/)- is closed and (i) implies that I/is not in this set,

there exists r > 0 such that -C(r)- n (it + rB) is void. Denote the convex hull [C(r)- u (it + rB)]
by K.

Assume that -C(r) r3 K were not void. Then there would be s,t > O,b 6_ B, and c,d 6- C(r)-
such that -d tc + sol + rb). But then I/+ rb -(d + tc)\s which is in -G(n)- :absurd. Hence

K does not intersect -C(r/).
Since K has nonvoid interior and does not contain 0 (0 being in -C(r), it follows that there

exists a non-zero element /’y of E’ such that .fy(z) _> 0 for all z 6- K. The intersection of the

kernel of ’ and the interior of K is evidently void. Since It is in the interior of K, we have

f,, (,) >o.

Let F be the set of all elements of the unit ball of E’ which are non-negative on

Then F is closed and equicontinuous, thus a(E’,E)-compact. Since E is separable, F is a(E’,E)-
metrizable. It follows that F is a(E’, E)-separable and so has a countable dense subset {f"
Let f be the element y fa\2 of E’.
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Let y be any non-zero element of C(r)-. Since f is in F, it is in the closure of the sequence

fn. It follows from (3) that f,(y) > 0 for some n lr. Consequently ]’(r + y) > f(r), which

yields (ii). QED
5. A RESULT FOR FINITE-DIMENSIONAL SPACES.

For finite-dimensional spaces, Theorem 3 can be given a somewhat stronger form, which is

the purpose of this final section. We begin however with a notion valid for general locally convex

spaces.

A strictly exposed point of a subset C of a locally convex space E will be said to the

strongly strictly exposed provided that the function f of the definition of strictly exposed may

be chosen in such a way that, if {x,} is any sequence in C(r)- for which f(x,) converges to 0,

then xn converges to 0.

LEMMA 1. Let r be a strictly extreme point of a convex subset C of a separable normed

space E. Then there exists a continuous norm on E such that r is strongly strictly exposed

relative to this new norm.

PROOF. Let {f,:n 1r} and f be as in the proof to THEOREM 2. Define by letting

I111 l]’,,()l\:r" for all E.

Evidently we have f(x) I111 ’o =: c().
It remains only to prove that i norm. Suppose that IIil 0 for some z E (which

implies that f(x) 0 for each n }. Since C(r) is a convex cone, its polar C(r) is precisely

the set of all h E’ such that h(x} <_ 0 for all x C(r}. By the duality theory for locally convex

spaces, we know that the bi-polar C{r) is just C(r)-. Note that V(r) is precisely the set -F
(where F is as in the proof to Theorem 2) and recall that {]’ :n } is dense in F. It follows
that x is in the bi-polar C(r} CCr}-. But C()- is just {0} by hypothesis. Hence x is the

origin and is a norm. QED
THEOREM 4. Let r be a strictly extreme point of a convex subset of a finite dimensional

space E. Then is strongly strictly exposed.

PROOF. Obviously E is separable and so we may appropriate the norm of Lemma 1. Since

all Hausdorff locally convex topologies are equivalent for finite dimensional spaces, r is strongly

strictly exposed. QED
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