RESEARCH NOTES

EXTREMAL PROBLEMS FOR COMPLETELY POSITIVE MAPS

MINGZE YANG

Department of Mathematics,University of Saskatchewan Saskatoon,Canada S7N 0W0

(Received February 1, 1993 and in revised form August 24, 1993)

ABSTRACT. In this note, we study the faces of some convex subsets of $CP_c(A, B(\mathcal{H}))$ (the continuous completely positive linear maps from pro- C^* -algebra A to $B(\mathcal{H})$).

KEY WORDS AND PHRASES: Pro-C*-algebras, completely positive operators, faces. 1980 AMS SUBJECT CLASSIFICATION CODES: 46L05, 47A67

A pro- C^* -algebra is a complete Hausdorff topological *-algebra over C containing identity 1 whose topology is determined by its continuous C^* -seminorms in the sense that a net a_{λ} converges to 0 if and only if $p(a_{\lambda}) \to 0$ for every continuous C^* -seminorm p on A. From [4], we see this is a generalization of C^* -algebras.

First we recall the following analogue of Stinespring's representation theorem from [3].

Theorem 1. Let A be a pro-C^{*}-algebra, and $B(\mathcal{H})$ denote the set of all bounded linear operators on Hilbert space \mathcal{H} . If $\phi : A \to B(\mathcal{H})$ is a continuous completely positive liear map, then there exists a Hilbert space \mathcal{K} , a continuous *-representation $\pi : A \to B(\mathcal{K})$, and a bounded linear operator $V : \mathcal{H} \to \mathcal{K}$ such that $\phi(a) = V^*\pi(a)V$ for all $a \in A$.

Remark 2. Let $\phi(a) = V^*\pi(a)V$ be as in the theorem. Letting $\mathcal{K}_0 = [\pi(A)V\mathcal{H}]$, the restriction π_0 of π to \mathcal{K}_0 also satisfies $\phi(a) = V^*\pi_0(a)V$, and so there is no essential loss if we require that $[\pi(A)V\mathcal{H}] = \mathcal{K}$. Such a pair (π, V) will be called minimal.

Recall from elementary convexity theory that a closed, non-empty subset F of a convex subset C is called a face if F is convex, and if ax + (1 - a)y in F for 0 < a < 1 implies that $x \in F$ and $y \in F$, for all elements x, y in C. A minimal (i.e. one-point) face of C is called an extreme point.

Lemma 3. Let $T \in B(\mathcal{H}), T \geq 0$. The map $S \to T^{\frac{1}{2}}ST^{\frac{1}{2}}$ is an affine isomorphism of $[0, R_T]$ onto [0, T], where R_T denotes the range projection of T.

Proof. For $S \in [0, R_T]$ and $\xi \in \mathcal{H}$, $\langle T^{\frac{1}{2}}ST^{\frac{1}{2}}\xi, \xi \rangle = \langle ST^{\frac{1}{2}}\xi, T^{\frac{1}{2}}\xi \rangle \leq \langle R_TT^{\frac{1}{2}}\xi, T^{\frac{1}{2}}\xi \rangle = \langle T_{\xi}, \xi \rangle$, thus $T^{\frac{1}{2}}ST^{\frac{1}{2}} \leq T$, also one sees that $T^{\frac{1}{2}}ST^{\frac{1}{2}} \geq 0$, so $T^{\frac{1}{2}}ST^{\frac{1}{2}} \in [0, T]$, The map is clearly affine and, for $S_1, S_2 \in [0, R_T]$, if $T^{\frac{1}{2}}S_1T^{\frac{1}{2}} = T^{\frac{1}{2}}S_2T^{\frac{1}{2}}$, then, for all $\xi, \eta \in \mathcal{H}$, $\langle S_1T^{\frac{1}{2}}\xi, T^{\frac{1}{2}}\eta \rangle = \langle S_2T^{\frac{1}{2}}\xi, T^{\frac{1}{2}}\eta \rangle$. This implies S_1 and S_2 agree on $[T^{\frac{1}{2}}\mathcal{H}] = [T\mathcal{H}]$. Since they are both 0 on $[T\mathcal{H}]^{\perp}$, $S_1 = S_2$. Therefore the map is one to one. It remines to show that it is onto. For $\eta \in T(\mathcal{H})$, say $\eta = T\xi, \xi \in \mathcal{H}$, let $T^{-\frac{1}{2}}\eta = T^{\frac{1}{2}}\xi$, since $T_{\xi_1} = T_{\xi_2}$ implies $T^{\frac{1}{2}}\xi_1 = T^{\frac{1}{2}}\xi_2, T^{-\frac{1}{2}}\eta$ is well defined for all $\xi \in T(\mathcal{H})$, now let $A \in [0,T]$. Define a sesqui-linear form B on $T(\mathcal{H}) \times T(\mathcal{H})$ by $B(\xi, \eta) = \langle AT^{-\frac{1}{2}}\xi, T^{-\frac{1}{2}}\eta \rangle$. Using the polarization identity and the fact $A \leq T$, one sees that B is bounded on $T(\mathcal{H}) \times T(\mathcal{H})$ and thus defines a bounded linear operator S_0 on $[T\mathcal{H}]$ such that $\langle S_0\xi, \eta \rangle = B(\xi, \eta)$ for all $\xi, \eta \in T(\mathcal{H})$. Define $S\xi = S_0(R_T\xi)$, for all $\xi \in \mathcal{H}$. Thus $S \in B(\mathcal{H})$. For all $\xi \in T(\mathcal{H}), \langle S\xi, \xi \rangle = \langle S_0\xi, \xi \rangle = \langle AT^{-\frac{1}{2}}\xi, T^{-\frac{1}{2}}\xi \rangle \leq \langle TT^{-\frac{1}{2}}\xi, T^{-\frac{1}{2}}\xi \rangle \leq \langle R_T\xi, \xi \rangle$. Thus $\langle S\xi, \xi \rangle \leq \langle R_T\xi, \xi \rangle$, for all $\xi \in [T\mathcal{H}]$. For $\xi \in \mathcal{H}$, $\langle S\xi, \xi \rangle = \langle S(R_T\xi + (I - R_T)\xi), R_T\xi + (I - R_T)\xi \rangle = \langle SR_T\xi, R_T\xi \rangle \leq \langle R_T\xi, \xi \rangle$. Therefore, $S \leq R_T$ and a similar argument shows $S \geq 0$. Finally, $T^{\frac{1}{2}}ST^{\frac{1}{2}} = A$ by construction.

Theorem 4. If B_+ is the positive part of the unit ball in a von Neumann algebra A, then each weakly closed face F of B_+ has form $F = \{L \in B_+ | p \le L \le q\}$ for a unique pair of projections such that $p \le q$ in A.

Corollary 5. Each weakly closed face of [0, T] has form $\{L : T^{\frac{1}{2}}pT^{\frac{1}{2}} < L < T^{\frac{1}{2}}qT^{\frac{1}{2}}\}$, where p and q are projections, and $p \leq R_T$ and $q \leq R_T$.

We recall certain topological properties of the space of all operator-valued linear maps.

Let A be a pro-C^{*}-algebra, and let \mathcal{H} be a Hilbert space, $B(A, B(\mathcal{H}))$ will denote the vector space of all continuous linear maps of A into $B(\mathcal{H})$. We shall endow $B(A, B(\mathcal{H}))$ with a certain weak topology, namely BW-topology. For $r \geq 0$, let $B_r(A, B(\mathcal{H}))$ denote the closed ball of radius r: $B_r(A, B(\mathcal{H})) = \{\phi \in B(A, B(\mathcal{H})); ||\phi(a)|| \leq rp(a), a \in A\}$, where because ϕ is continuous, there exists $p \in S(A)$ such that $||\phi(a)|| \leq Mp(a)$. First we topologize B_r as follows, by definition, a net $\phi_v \in B_r(A, B(\mathcal{H}))$ converges to $\phi \in B_r(A, B(\mathcal{H}))$ if $\phi_v(a) \to \phi(a)$ in the weak operator topology, for every $a \in A$. A convex subset \mathcal{U} of $B(A, B(\mathcal{H}))$ is open if $\mathcal{U} \cap B_r(A, B(\mathcal{H}))$ is an open subset of $B_r(A, B(\mathcal{H}))$, for every $r \geq 0$. The convex open sets form a base for a locally convex Hausdorff topology on $B(A, B(\mathcal{H}))$, which we shall call the BW-topology.

Now we come to discuss the facial structure of completely positive operators. First we give a lemma. Let $\phi(a) = V^* \pi(a) V$ be a continuous completely positive linear map as in Theorem 1.

Lemma 6. The mapping from $\{T \in \pi(A)' : 0 \le T \le I\}$ to $[0, \phi]$ defined by $\phi_T(a) = V^*T\pi(a)V$ is a homeomorphism related to the restriction of weak operator topology of von Neumann algebra $\pi(A)'$ and BW-topology of $B(A, B(\mathcal{H}))$.

Proof. $[0, \phi]$ is a *BW*-closed subset of $B(A, B(\mathcal{H}))$. If $\{\phi_v\}$ is a net in $[0, \phi]$, and ϕ_v converges to $\phi_0 \in [0, \phi]$ in *BW*-topology. We have for every $a \in A$, $\phi_v(a) \to \phi_0(a)$ in weak operator topology. That is, for every $\xi, \eta \in \mathcal{H}, \langle \phi_v(a)(\xi), \eta \rangle \to \langle \phi_0(a)(\xi), \eta \rangle$. But we have $\phi_v(a) = V^*T_v\pi(a)V$, and $\phi_0 = V^*T_0\pi(a)V$, where $T_0, T_v \in \pi(A)'$, and $0 \leq T_0, T_v \leq I$. So we have $\langle V^*T_v\pi(a)V(\xi), \eta \rangle \to \langle V^*T_0\pi(a)V(\xi), \eta \rangle$, for every $a, b \in A$, and $\xi, \eta \in \mathcal{H}$, we have $\langle T_v\pi(b)V(\xi), \pi(a)V(\eta) \rangle \to \langle T_0\pi(b)V(\xi), \pi(a)V(\eta) \rangle$, but $\mathcal{R} = [\pi(A)V\mathcal{H}]$, so $T_v \to T_0$ in the weak operator topology. The other direction is similar.

Theorem 7. Given two completely positive operators ψ and ϕ with $\psi \leq \phi$. Let $\phi = V^* \pi V$ be the minimal representation of ϕ , then the *BW*-closed faces in $[0, \phi]$ are of the form $\{\phi_L; L \in \pi(A)', (I-T)^{\frac{1}{2}}p(I-T)^{\frac{1}{2}}+T \leq L \leq (I-T)^{\frac{1}{2}}q(I-T)^{\frac{1}{2}}+T\}$, where p and q are projections in $\pi(A)'$ and $p \leq R_{I-T}$, $q \leq R_{I-T}$, and $\psi = V^*T\pi V$.

Proof. It is an easy consequence of lemma 6 and the above corollary 5.

Corollary 8. Let $\phi = V^* \pi V$ be the minimal representation of ϕ , then the *BW*-closed faces in $[0, \phi]$ are of the form $\{\phi_T; T \in \pi(A)', p \leq T \leq q\}$, where p and q are projections in $\pi(A)'$.

Acknowledgement. The author wishes to express his deepest gratitude to Professor K. F. Taylor, for giving him the proof of Lemma 3.

References

1. C.A.Akemann and G.K.Pedersen. Facial Structure in Operator Algebra Theory, preprint, 1991.

2. W.B.Arveson. Subalgebras of C*-algebras, Acta Math., 123 (1969), 142-224

3. S.J.Bhatt and D.J.Karia. Complete Positivety, Tensor Products and C*-Nuclearity for Inverse Limits of C*-Algebras, Proc. Indian Acad. Sci. 101(1991) 149-167.

4. N.C.Phillips. Inverse Limits of C*-algebras, J. Operator Theory 19(1988) 159-195