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ABSTRACT. We consider compact n-dimensional minimal foliate CR-real submanifolds of a

complex projective space. We show that these submanifolds are great circles on a 2-dimensional

sphere provided that the square of the length of the second fundamental form is less than or equal
to n-1.
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1. INTRODUCTION.
CR-submanifolds of a Kaehlerian manifold have been defined by A. Bejancu [1]. These

manifolds have then been studied by several authors. Among these are B.Y. Chen [2],[3], K. Yano,
M. Kon, K. Sekigawa, and A. Ross [4].

In particular CR-submanifolds isometrically immersed in complex projective space have been

considered by K. Yano and M. Kon [6]. They studied CR-submanifolds isometrically immersed in

complex projective space with geometric properties such as semi-flat normal connection or parallel
mean curvature. In this paper we consider minimal proper CR-hypersurfaces of a complex
projective space, for such submanifolds we have obtained the following:

THEOREM 1. Let M be a compact n-dimensional minimal foliate CR-real hypersurface of a

complex projective space. If the square of the length of the second fundamental form is <_ (n-1),
then M is a totally real submanifold of dimension 1. In fact M is a great circle on S2.
2. PRELIMINARIES.

A submanifold M of a Kaehler manifold is called a CR-submanifold if there is a differentiable

distribution D:x---D c TM on M satisfying the following conditions:

(a) D is holomorphic i.e., JD D for each z E M, where J is the almost complex structure.

b) The complementary orthogonal distribution D:zD c TM is totally real i.e., J C: T zM where

T M is the normal bundle. If dim )z=0 (respectively, dim Dz=O), M is called a complex
(respectively totally real) submanifold. A CR-submanifold is said to be proper if it is neither

complex nor totally real. The normal bundle Ta:M splits as TzM J) q/, where tt is invariant sub-

bundle of TxM under J.
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Now let / be the complex projective space, which is a Kaehler manifold with constant

holomorphic sectional curvature 4. Let g be the Hermitian metric tensor field of/. Suppose that

M is an n-dimensional CR-hypersurface of . We denote by the same g the Riemannian metric

tensor field induced on M from that of/. Let V, , X7 be the Riemannian connections on M, /

and the normal bundle respectively. Then we have Gauss formula and Weingarten formula;

v xv v xY + h(X,Y)

XN= -ANX, N E T M

where h(X,Y) and ANX are the second fundamental forms which are related by

(2.1)

(h(X,Y),N)- (ANX, Y

where X and Y are vector fields on M.

We also have the following Gauss equation

(2.3)

R(X, Y; Z, W) 9(Y,Z)9(X, W) g(X,Z)g(Y, W) + g(JY, Z)o(JX, W) g(JX, Z)g(JY, W)

+ 29(X, JY)9(JZ, W) + 9(h(Y,Z),h(X, W))- 9(h(X,Z),h(Y, W))

where R(X,Y;Z,W) is the Riemannian curvature tensor of type (0,4).
Let H 1 (trace h) be the mean curvature vector. Then M is said to be minimal if H 0.

A CR-submanifold is said to be mixed foliate if

(a) the holomorphic distribution D is integrable.

(b) h(X,O 0 for X E D and .
For mixed foliate submanifolds of a complex spa:e form .(c) (i.e., a Kaehler manifold of constant

holomorphic sectional curvature c), the following result is well known

THEOREM 2.[3] If M is a mixed foliate proper CR-submanifold of a complex space form .(c),
then we have c < 0.

3. C/-HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE.
We consider an n-dimensional proper CR-hypersurface M of a complex projective space .

Then it follows that dim D 1. Now assume that M is minimal and the holomorphic distribution D
.1. 2p

is integrable. If ( i),i 2p is an orthonormal basis for D, where 2 dim D, then ilh(ti, ei)=O.
Since M is minimal we get h(,)= 0 for a unit vector in ). Note that V X D. Then using the

equation xJ d x and equations (2.1) and (2.2) we have for x e D

vx SaX

Also the equation s S with h(,)= 0 and equations (2.1) and (2.2) yields

v

Let (ei),i n be an orthonormal basis for M, where =-g for 2p and n

n 210 + 1. Since A is symmetric and J is skew symmetric we get

(3.1)

(3.2)

g(JAei, ei) g(JAJei, Jei).

Then using (3.1), (3.2), and (3.3) we compute

n 2p p

lg :E l{g(JAei’ei) + g(JAJei’Jei)} 0div
=1

g(ei’ei) =r v ei,i)

(3.3)

(3.4)
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For any vector field x on M we have [5]

air( U XX) div(divX)X S(X, X) + 1/2 LXg
2 V X 2 divX )2 (3.5)

where S is the Ricci tensor and LXg is the Lie differentiation with respect to a vector field X,

defined by

(LXg)(Y,Z) g( 7 xY, Z)+ g( V xZ, Y)

Using (3.4) in (3.5) with x we get

div( V ff) S(f, f) + 1/2l Lfl 2 V f 12
From Gauss equation (2.4) and the fact that h(,)= 0 we have

(3.6)

n
E g(h(ei,),S)g(h(ei,),J)E ig(h(ei,),h(ei,)) (n- 1)S(,) (n- 1)9(,)-

=(n-l)- g(A,ei)g(A,ei)=(n-1)-g(A,A)=(n-1)-g(A2,)
i=1

Using (3.1) and (3.2) we also have

(3.7)

Zig 7 eif, Veif) =.E.g( 7 ei,ej)a( 7 ei,ej) =iE, jg(JAei, ej)g(JAei, ej)

Eig(JAei, JAei)- Eig(JAei, J) g(Saei, J() traceA2 Eig(A(,ei)g(A(,ei)
traceA2 g(A(,A() traceA2 g(A2f, ()

From (3.6), (3.7), and (3.8) we obtain

(3.8)

div( 7) (n 1) traceA2 + 1/2 Lg 12
PROOF. Using equation (3.9) and the assumption that M is compact we have

(3.9)

2 f [(n 1) trA2]dv f Lgl 2dv
M M

From the hypothesis of Theorem and equation (3.10), we have Lgl 0. Hence

(3.10)

o (Ld)(Jx,0 ( v sx,O + ( v ,sx) ( v ,sx)
Using equation (3.2) in the above equation we get h(X,f)=0 i.e., M is mixed foliate. Since the

holomorphic sectional curvature c of the complex projective space r equals 4, then by theorem (2)
M cannot be proper mixed foliate. Therefore M is either totally real or holomorphic. But since

dirnD 1,M cannot be holomorphic. Therefore M is totally real. Since M is a hypersurface this

implies that dim M and dim r 2. Now using the assumption that tr.A2 < n-1 and dirnM

we have tr.A2 0 i.e., M is totally geodesic. Since dim r 2 i.e., is $2( CP), then M totally

geodesic implies that M is a great circle S on S2.

NOTE: It has been pointed out to us that the result in this theorem might be in conflict with

Proposition 2.3 of Maeda, Y., "On real hypersurfaces of a complex projective space," J. Math. Soc.
Japan, Vol. 28, No. 3.3 (1976), 529-540. We could not detect any mistakes in our proof, but we

shall investigate this point later.



616 M.A. BASHIR

REFERENCES

1. BEJANCU, A. CR-submanifolds of a Kaehler manifold, I, II, Proc. Amer. Math. Soc. 69
(1978) 135-142; Trans. Amer. Math. Soc. 250 (1979), 333-345.

2. CHEN, B.Y. CR-submanifolds of a Kaehler manifold, J. Diff. Geom. 16 (1981), 305-322.
3. CHEN, B.Y. CR-submanifolds of a Kaehler manifold II, I.J. Diff. Geom. 16 (1981), 493-509.

4. ROSS, A. Spectral geometry of CR-minimal submanifolds in the complex projective space,
Kodi, Math. J. 6 (1983), 88-99.

5. YANO, K. On harmonic and killing vector fields, Ann. Math. 55 (1952), 38-45.

6. YANO, K. CR-submanifolds of a complex projectile space, .J. Diff. Geom. 16 (1981), 431-444.


