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ABSTRACT. Some generalized maximum principles are established for linear second-order

parabolic systems in which both first-order and zero-order terms are coupled.
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1. INTRODUCTION.
Hile and Protter [2] proved that the Euclidean length of the solution vector
u € CYD)NC(D) of the second-order elliptic system
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can be bounded by a constant times the maximum of its boundary values under a “small”
condition which requires that either the domain D or the coefficients b,,, and ¢,, are sufficiently
small. In this paper, we have established the same kind of maximum principle for the second-

order parabolic system

Xn: ,‘(zt)au 6u,+z Zb (=.t) 3 ’+Z (z,t)u, =0,1<s<m.
ik=1 % 0z,0z;, B o ol
Moreover, our parabolic version of the maximum principle holds without any “small” conditions.
When the coupling occurs only in the zero-order terms (i.e., in the case of b,,; =0 for all
1,7,8 except when j=s), the above systems are called weakly coupled systems. For weakly
coupled second-order parabolic systems, similar maximum principles have been obtained by Stys
[4] and Zhou [6]. Under different assumptions, different maximum principles in which the
components rather than the Euclidean length of the solution vector are bounded can be found in
Protter and Weinberger [3] and Dow [1]. In Weinberger’s paper [5], both kinds of maximum
principles have been reformulated and studied in terms of invariant sets.
2. MAIN RESULTS.

Consider a second-order parabolic operator with real coefficients,

7 2
M= . Z alk(zvt) 01001, - %3 a,, =a,,
Lk=1 ok

in a general bounded domain Q in R" xR, (n > 1) with the boundary 9: = 0,Q2U 0,Q2. Here 3,0
is the parabolic boundary of  and 9,Q%: = 9Q\0,Q. We suppose that Q C D x(0,T) where D is a
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bounded domain in R" and 0 < T < oo. The opecrator M is assumed to be uniformly parabolic in

Q; i.e., there is a constant § >0 such that for all (z,t)€Q and all (y,, - -,y,) in C" the
inequality n
> s D728 lul? (2.1)
k= 1=1
holds. The operator M is the principal part of each equation in the second-order parabolic
system
Mu, + Zl E b,,,(z,t) 92 ]+ Z ¢,(z,t)u, =0, s=1,2,---,m. (2.2)
i=1y=

We suppose that the complex-valued coefficients b,,;, c,, have the property that for all { € C™
and all (z,t) € .

n _ -
Agb,, b ,k]J §EL,< K| €)% for some K >0. (2.3)
=1

m L o
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Here (A;,) =(A,;) denotes the inverse matrix of (a,;). A solution u = (uj,uy - -,u,,) is a
complex-valued C*'(2U3,2)NC(N) function which satisfies (2) in Q. Here C¥*() is defined
as the set of functions f(z,t) having all x (space) derivatives of order <k and t (time)

derivatives of order < h continuous in 2.
THEOREM 1. Assume conditions (1.1) and (1.3) hold. If u is a solution of (2.2) and « is a
positive C*(2U 9,0) function, then the product a|u|?=a E |u,|? cannot attain a positive

maximum at any point in QU 9,0 where « satisfies

4 da D
a 'Ma~2a"? kz: "‘3: 6::>K (2.4)
k=1

PROOF. Weset p= |u|?= EIu,Pandfind

)
M(ap) = pMa + aMp +2 z ,kgﬂ 6:,; (2.5)

lv

At a point (z,t) € QU 9§, where ap attains a maximum, we have

d(ap) _0ap) _ pda
0< ot ’ 0= "0z, 6:t,,+ oz,’ lsksn,
and (2.5) becomes
n
M(ap):pliMa—Za“v kX: a g:(z’ g;t}+aMp (2.6)
k=

A direct computation yields

m _ _ n b ) 3—,
Mp =3 l:u,Mu,+u,Mu,+2 3 a,-kﬁt;—. a’;k]

s=1 k=1
m _ n m Ou Ou, 01,
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Hence, from (2.6), we have
.- da 9
Al(ap)zap,:a‘lMu—‘.?n‘2 kz la,kﬁ a—;:— \’} (2.7)
1k =

This inequality holds at any point in QU 3,2 where ap attains a maximum. Thus ap cannot

achieve a positive maximum at any point in QU d,Q where the quantity in brackets in (2.7) is

positive. The theorem is established. u}
REMARK. If for all (z,t) € Q,
ley, | < Ko, |b,,,] <K,1<i<n,1<j,s<m, for some Ko, K, €R, (2.8)

then for any £ € C™,

< B led(ler+ 167+ B8 Ak,( $ 6,7 )(élh,s,)

r,s=1 j=1lkai=1 s=1

m
<2m1\0 Z |§,| +26 E Z | th!]€l|2

j=1li=1 s=1

<omKole?+2 3 ¥ z by € 4|2 < 2o + (26) " nm?K3] | €17,
j=li=1s=
which is the condition (2.3) with K: = 2mK, + (26) " 'nm?K?. Hence, the single bound (2.3) in
Theorem 1 can be replaced by the separate bounds (2.8) with K: = 2mK + (26) ~ 'nm?K?%.

Under the conditions (2.1) and (2.3) (or (2.1) and (2.8)), by choosing
az,t) = e~ K+ ¢ 5 0, the condition (2.4) will be satisfied. Hence from Theorem 1, we get the
following maximum principle:

COROLLARY 2 (Maximum Principle). For any solution u of the system (2.2), the function

| u(z,t) | 2exp[ — (K + €)t],e > 0,

does not attain a positive maximum in QU 9,2, and
lullo,q<exp(KT/2) | ul| 0,8, (29)
Here K = (26) " 'nm’K} +2mKy and ||ull q: = mff)en | u(z,t)].

REMARK. Results similar to Theorem 1 a.(m’i Corollary 2 for second-order elliptic systems
were proven by Hile and Protter [2] (under a condition which is similar to (2.8)). But their
maximum principle for elliptic systems only holds under the restriction that either the domain D
is sufficiently small or the coefficients of the elliptic system are restricted sufficiently. Corollary
2 tells us that these restrictions can be lifted for parabolic systems.

COROLLARY 3 (Uniqueness). The system (2.2) with the initial-boundary condition

ul 8,0 = e(z,t)
has at most one solution u € C*'(QU ,Q)NC(Q).
Theorem 1 can be used to obtain bounds on the gradient of the C*? solution of the parabolic

system (2.2), provided the coefficients are C! and
” A ” 1,0 < L2) “ bu] ” 1,0 < le “ Csy ” 1,0 < LOv for some LZV LhLO ER. (210)

e}
Here || fll1,0: = I £ lo,0+ £ 15000+ 15 lo,0
We differentiate (2.2) W1th respect to z;, and ¢, and get m(n + 1) equations:
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k=1 =1
n.mogb,, m 6u m e
+ Z Z + Z o 3z, E 3_1'
1=17=1 Th Jj=1
s=1,2,---m andh=l,2,- RN (8 (2.11)
au,) B Qa,, 9 [Ou, I Ou,
M(at +l.kz_l_t—?9?, oz, +i§ Zb“’az ¥
n. m gb,. Ju m du de,
+ Z E T]' %l + 2 €y tJ E atJ u, =0,
1=1)=1 tog=1 j=1
h=1,2,---,n. (2.12)
By combining (2.2), (2.11) and (2.12) we get a system (of the form (2.2)) consisting of m(n + 2)
equations in the m(n + 2) unknowns u,, 5—11' dc;; S2s=1,2---m, h=12, -

THEOREM 4. Let K:=(26)"'n(n+2)!m¥Maz{L,,L,})* + 2m(n + 2)Maz{Ly,L,} and
suppose that u is a CY}QU,Q)NCYQ) solution of (2.2) and « is a positive C(QU 3,Q)
function. Then the product

Ju, r
1o

cannot attain a positive maximum at any point in QU 9,0 where « satisfies (2.4).
COROLLARY 5. Let K be the same number of Theorem 4. Then, for any
C*} QU 8,2)NCYQ) solution u of the system (2.2), we have
lulldot | Vullda < ezP(KT)( [l 5,apn+ | Vul S,apn)a

olz, t) |u(z,) |2+ | Vulz,t)| ] = a(z,t) Z [lu

or equivalently,
lulls,0 < ezp(KT/2)- [|ull1,0,0
REMARK. Under the condition that either (c,;)mxm iS a constant matrix or (¢,,)mxm 18
invertible for all (z,t) € Q, the unknowns u,,s=1,---,m, can be eliminated from the system
(2.2), (2.11), (2.12), and then a system of m(n+1) equations in the gradient of u yields a

maximum principle for a| Vu |2
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