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ABSTRACT. Some generalized maximunl principles are established for linear second-order

parabolic systems in which both first-order and zero-order terms are coupled.
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1. INTRODUCTION.
Hile and Protter [2] proved that the Euclidean length of the solution vector

u E C(D) N C( of the second-order elliptic system

n 02U, n m Ouj rny a,k(X) Ox,O:k+ y b,,,(x)--x,+ y c.,(x)u, O, =1,-..,rn,
i,k=l i=1 j=l j=l

can be bounded by a constant times the maximum of its boundary values under a "small"

condition which requires that either the domain D or the coefficients b,u and c, are sufficiently

small. In this paper, we have established the same kind of maximum principle for the second-

order parabolic system

n Ouo Ou n m Ou m

F. + F. + }2 o, < < m.
Ox,Oxk Ot

i,k=l i=1 j=l j=l

Moreover, our parabolic version of the maximum principle holds without any "small" conditions.

When the coupling occurs only in the zero-order terms (i.e., in the case of bo,j 0 for all

i,j,s except when j s), the above systems are called weakly coupled systems. For weakly
coupled second-order parabolic systems, similar maximum principles have been obtained by Stys

[4] and Zhou [6]. Under different assumptions, different maximum principles in which the

components rather than the Euclidean length of the solution vector are bounded can be found in

Protter and Weinberger [3] and Dow [1]. In Weinberger’s paper [5], both kinds of maximum

principles have been reformulated and studied in terms of invariant sets.

2. MAIN RESULTS.
Consider a second-order parabolic operator with real coefficients,

n 0 0M =_ a,(x, t) Ox,Ox, Ot’ a, as,
i,k=

in a general bounded domain ft in N’x Nt (n 2 1) with the boundary 0f: 0,f U 0ll. Here 0ft
is the parabolic boundary of ft and 0tf: 0ft\0,ft. We suppose that f C D x (0, T) where D is a



814 C. ZHOU

holds.

system

bounded domain in I" and 0 < T < (x. The operator M is assumed to be uniformly parabolic in

fl; i.e., there is a constant t >0 such that tbr all (x,t) EFt and all (y,.- .,y,) in C" the

inequality

.,(.,t)/,z I,1 (2.1)
z,k=l ,=1

The operator M is the principal part of each equation in tlie second-order paralic

Mu, + b,,j(x,t) + c,j(x,t)u 0, s 1,2,..-,m. (2.2)== j=

We suppose that the complex-valued coefficients b,,,
d all (z, t) .

c. +. + A,b.,,b , . Klein, for some K > 0. (2.3)
r,s= l =1 k,i=

Here (A,)= (A,) denotes the inverse matrix of (a,,). A solution u (u,u,...,u)is a

complex-vMued C’I(u0t)C() function which satisfies (2) in ft. Here C’a() is defined

the set of functions f(x,t) having all x (space) derivatives of order k d (time)
derivatives of order < h continuous in ft.

THEOM 1. Assume conditions (1.1) and (1.3) hold. If u is a solution of (2.2) d a is a

positive C’(fl O Otfl) function, then the product a [u [2 a [u [ cannot attn a positive
mimum at y point in Ot where satisfies

n
a-Ma 2a- a, 0 Oz > K. (2.4)

i,k=

POOF. w st I I. a

Oa Op (2.5)M(ap) pMa + amp + 2
i,k=

At a point (x, t) O0 where ap attMns a maximum, we hve

0 < a() 0 a()
o oz =a+, z,

and (2.5) becomes
n 0a 0___1M(ap) p Ma- 2a-1 a,k +aMp.

i,k= 1
A direct computation yields

(2.6)

Mp

m

--1
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Hence, from (2.6), we have

n
M(cp) > p c-1M 2- a,,. K. (2.7)

This inequality holds at any point in fl U0 where p attains a maximum. Thus p cannot

achieve a positive maximum at any point in ] 0fl where the quantity in brackets in (2.7) is

positive. The theorem is established.

MA. If for 1 (x, t) fl,

c. Ko, lb.,, K,,1 5 n, j,s m, for some Ko, K R, (2.8)

then for any C,
r,s j k,i

r,s j k,i s r 1

s=l 3=1z=1 s=l

2mlf0lfle+ .
3=li=ls=l

which is the condition (2.3) with K: 2mKo + (26)-anm=K. Hence, the single bound (2.3)in
Theorem can be replaced by the sepate bounds (2.8) with K: 2inKo + (23)-’nmK.

Under the conditions (2.1) d (2.3) (or (2.1) d (2.8)), by chasing
(x,t) e -{g +e)t,g > 0, the condition (2.4) will be satisfied. Hence from Theorem 1, we get the

following maximum principle:

COROLLARY 2 (Mm Pdple). For any solution u of the system (2.2), the function

.(,) =xp[- (g + )1, > 0,

ds not attMn a positive maximum in U 0, and

u 0,. p(iT/2)[ u o, o.. (2.9)

Here K=(26)-nm=g +2mgoand ]lU]]o,a" =sup ]u(x,t)].

MA. Results similar to Theorem d Corolly 2 for second-order elliptic systems
were proven by Hile nd ProCter [2] (under a condition which is simil to (2.8)). Bu their

maximum principle for elliptic systems only holds under the restriction tha either the domn D
is sufficiently smM1 or the coefficients of the elliptic system are restricted sufficiently. Corolly
2 tells us that these restrictions can be lifted or parabolic systems.

COROLLARY 3 (quen). The system (2.2) with the inii-boundary condition

p

t mot o otio c’ (n ,n) c(fi ).
Theorem can be used to obtain bounds on the gradient of the C’ solution of the pbolic

system (2.2), provided the coefficients are C and

We differentiate (2.2) with respect o z and t, and ge m(n + ) equations:
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i,k= ,=1 j= kOXh]

n rn Ob,u i)u m Ou - Ocoj+E E o, o.+Z.,+ 7, =0,
i=lj=l j=l /=1

s=l,2,...,mandh=l,2,...,n; (2.11)

i,k=

n rn Ob,, 0, m Ou m
+ F_, F, o Ox, + F,,,---+ F, ---,,,=o,
i=1=1 j=l j=l

h 1,2,.- .,n. (2.12)

By combining (2.2), (2.11) and (2.12) we get a system (of the form (2.2)) consisting of m(n + 2)
Ou, Ouequations in the m(n + 2) unknowns u,, Oxh, Ot ,s 1,2, .,m, h 1,2, .,n.

TItEOREM 4. Let It’: (26)-n(n + 2)m(Max{La, L}) + 2m(n + 2)Max{Lo, La} and

suppose that u is a Ca,(nuO,f)nCl(fi) solution of (2.2) and ( is a positive c,’(a0,a)
function. Then the product

s=l i=1

cannot attain a positive maximum at any point in fl U 0,fl where a satisfies (2.4).
COROLLARY 5. Let K be the same number of Theorem 4. Then, for any

Ca’(a u 0,fl)cl C() solution u of the system (2.2), we have

u g,a + v u g,a _< exp(KTX u 0,%n + v u

or equivalently,

REMARK. Under the condition that either (co),,,, is a constant matrix or (Co),,,,,, is

invertible for all (x,t) , the unknowns uo, s= 1,...,m, can be eliminated from the system

(2.2), (2.11), (2.12), and then a system of m(n + 1) equations in the gradient of u yields a

maximum principle for c V u .
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