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ABSTRACT: We study bundles of Banach algebras x A X where each fiber Ax
x-l({x}) is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers

are commutative, we investigate how the Gelfand representation of the section space algebra r(x)
relates to the Gelfand representation of the fibers. In the general case, we investigate how

adjoining an identity to the bundle A X relates to the standard adjunction of identities to

the fibers.
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1. INTRODUCTION
This paper continues the study of Banach bundles which has been pursued by the authors

in a number of papers. This time, the focus is on bundles of Banach algebras. The reader is

referred to Ill or [2] for general information about Banach bundles, and to [3] for the precise

definition of bundles of Banach algebras which we use here.

We make the blanket assumption for this paper that the base space X for any Banach

bundle E X which we deal with is both compact and Hausdorff. As a result, all of our

bundles are full; that is, for each x e X, the fiber Ex -- l({x}) (x) tr e r(,)}. (See [1, p.

26])
The paper is divided into two sections. The first section deals with bundles of

commutative Banach algebras. If x A X is a bundle of commutative Banach algebras, then

the section space F(x) is also a commutative Banach algebra under the pointwise operations. We
study how the (usual) Gelfand representation of F() relates to the Gelfand representations of the

fibers Ax - l({x}). We show, in particular, that A(F(r)), the maximal ideal space of F(), can

be identified with the disjoint union of the maximal ideal spaces of the fibers. This generalizes a

theorem of Rickart.
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The second section concerns the adjunction of identities. Suppose that r A X is a

bundle of (possibly non-commutative) Banach algebras. We show that there is a bundle of

Banach algebras ’ A’ X such that

1) for each x e X, (A’)x (Ax)l, the algebra obtained by adjoining an identity to Ax
and

2) the section space r(x’) is an algebra with identity which contains (an isomorphic copy of)
r().

2. BUNDLES OF COMMUTATIVE BANACH ALGEBRAS
Consider a bundle t A X of commutative Banach algebras. We will show that there is

a natural way of embedding the maximal ideal spaces of the fibers Ax r- l({x}) in the

maximal ideal space of A r(x). Moreover, so embedded, the maximal ideal spaces A(Ax)
provide a fibering of A(A). This result, Proposition 6, generalizes a theorem of Rickart [4].

To relate our result to that of Rickart, we consider first Banach algebras with identities and

axtopt the following definition.

DEFINITION 1: Let A X be a bundle of commutative Banach algebras. We say

that the bundle has an dentity if

1) each fiber Ax - l({x}) has an identity ex and

2) the section e, defined by e(x) ex for each x X, belongs to the section space r(=) (and
hence is the

identity for r(x) ).
We now show that if ,r: A X is a bundle with identity of commutative Banach algebras

then the section space r(t) fulfills the hypotheses of Theorem 3.2.2 of Rickart [4].
PROPOSITION 2: Let A X be a bundle with identity of commutative Banach

algebras. Then the algebra A I’(t) is a subdirect sum sum algebra of the family of fibers

{Ax:x X} which satisfies conditions (i), (ii), and (iii) of Theorem 3.2.2 of [4], namely:

(i) A contains the identity selection e defined above;

(ii) A is closed under (pointwise) multiplication by elements of C(X); and

(iii) for each a A, the map x Ila(x)ll is upper semicontinous on X.
PROOF: Since r(t) is a Banach algebra under the sup norm, it is a closed subalgebra of

the full direct sum {Ax: x X} as defined by Rickart [4, p. 77].. Because the base space X is

compact and Hausdorff, the set of function values {a(x):a r(t)} exhausts Ax for each x X.
Hence A r(=) is a subdirect algebra of the family {Ax:x X}. Condition (i) is simply our

definition of the algebra bundle having an identity. Condition (ii) is part of what is meant by

the assertion that r(t) is a C(X)-module, and condition (iii) holds for the sections of any bundle

of Banach spaces, tXl:]

The next result turns out to be a strengthened version of Rickart’s theorem.

PROPOSITION 3: Let A X be as above. Then A(A), the maximal ideal space of

A r(=), can be identified with

n= {(x, ). x, (A)},
the disjoint union of the maximal ideal spaces of the fibers, in such a way that the Gelfand

representation of A is described by the equation

(x, h) [(x)] (h)
for all (x, h) fl and all a A. Moreover,
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(1) for each x X, the topology on A(Ax) is the same as the topology which A(Ax)
inherits from A(A)

fl); and

(2) the coordinate projection p f X is continuous and closed with respect to the

topology which f

inherits from A(A).

Thus, A(A) f is a fibered space over X whose fibers are the maximal ideal spaces A(Ax).
PROOF: In [4, p. 129-130], Rickart shows that A(A) and f can be identified as point sets

in such a way that the identity (x, h) [a(x)] (h) holds.

We now prove assertions (1) and (2), which relate the topologies of the spaces A(A), X,

and A(Ax)
To prove continuity of the map p n X, we consider a convergent net (xc,, he, )} in

the compact space A(A) fl, say lim (xc, h) (x, h) We must prove that lim x, x, or

equivalently that lim ,(x) (x) for all C(X) (since the topology of X is the same as the

weak topology generated by the functions in C(X).) But lim ( e) (x, h) ( e) (x, h), and

($ e) (x, h) [( e)(x)] (h) [(x) ex] (h) (x) 6x(h) (x) (x),
and similarly ( e) (xa, ha) 4(xa). Thus, lim (xa) (x), as we wished to show. (A slightly

more complicated proof appears later, when we no longer assume the existence of identity

elements.)
To prove (1), it suffices to show that a net {ha} in A(Ax) converges to a point h iff the net

(x, ha) converges to (x, h) in A(A). Assuming that lim ha h in zX(Ax), it follows that

lim (x, ha) lim [a(x)] (ha) [a(x)] (h) (x, h)
for all A. If a is any element in Ax we can choose a A such that a(x) a. Then, if

lim (x, ha) (x, h) in

lim E(ha) lim [a(x)] (ha) lim F(x, ha) F(x, h) [a(x)] (h) E(h),
which implies that lim ha h in A(Ax). Because the algebra A has an identity, the maximal

ideal space fl A(A) is compact, and as a result the map p f X is not only continuous but

closed.

Our next result shows that Proposition 3 is indeed a strengthened version of Rickart’s

theorem.

PROPOSITION 4: Let X be a compact Hausdorff space, and let {Ax x X} be a family

of commutative Banach algebras indexed by X. Let A be a subdirect sum algebra of the family

{Ax" x e X} which satisfies conditions (i), (ii), and (iii) of Proposition 2. Then the disjoint union

A={(x,a)’xX,aAx}
can be uniquely topologized so that r A X is a bundle of Banach algebras having the

elements of A as sections (where r is the obvious coordinate projection). Moreover, A is the

entire section space I’0r).
PROOF: The existence of the desired topology on A follows from Proposition 1.3 in [2].

Because the norm on A is a sup norm, it is easily shown that A is C(X)-locally convex as a

module over C(X), and from this it follows that

COROLLARY 5: (Rickart’s Theorem) Let {Ax x X} and A satisfy the conditions of

Proposition 4. Then A(A) can be identified as a point set with the disjoint union

f {(x, h)" x X, h A(Ax)}
of the maximal ideal spaces of the algebras Ax
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So, Proposition 3 is a strengthening of Rickart’s result in this sense: not only can A(A) be
identified as a point set with the disjoint union of the family {/X(Ax) x e X}, but under this

identification A(Ax) is a closed subset of A(A) for each x, and {A(Ax) x e X} is an upper
semicontinuous decomposition of A(A). We show ncxt that much of this is true if we drop the

sumption that the algebrms in question have identities.

PROPOSITION 6: Let A X be a bundle of commutative Banach algebra. Then

A(A) the maximal ideal space of A r(x), can be identified as a point set with the disjoint union

={(x, h): xeX, he A(Ax)}
in such a way that

(x, h) [a(x)] (h)
holds for M1 (x, h) e fl d M1 a e r(,). Moreover, under this identification, a(Ax) is a closed
subset of A(A) for each x e X.

PROOF: If B is a commutative Bach Mgebra, we shall regd each point in A(B)
algebra homomorphism from B onto .

Consider element (x, h) e ft. Since the evMuation map evx r(r) Ax defined by
evx(a a(x) is a surjective Mgebra homomorphism, its composition with h Ax gives us

Mgebra homomorphism Cx, h h evx of A r(x) onto . Thus, Cx, h belongs to A(A), d for
M1 ae A,

(x, h Cx, h(a) (h oevx)(a h(a(x)) [a(x)] (h).
Let fl A(A) sign to each point (x, h) in fl the multiplicative line functionM Cx, h

We must show that the map is bijective.
To show injectivity, consider two distinct ints (x1, hl) d (x2, h2) e ft. We will show

that .1, h # x2, 52
Cel: xl=x2dhl#h2. Becausehl#h2,thereisaeAxsuchthathl(a)h2(a).

If we chse a e a such that a(x1) a then

CXl,h hl(a(Xl)) hl(a h2(a h2(a(x2))= Cx2,h (a).
2Ce 2: x x2 Chse a e Ax such that hl(a 1 d chse a e a such that a(Xl)

a. Next chse f e C(X) such that f(Xl) d f(x2) 0. Then

CXl,hl(f#) hl((fa)(Xl) hl(f(xl) #(x))= hl(a
d

Cx2,h2(f#) h2((fa)(x2)) 52(f(x2) #(x2))= 52(0 0.

Thus,_Xl,h Cx2,h
Having shown that the map A(A) is injective, we show next that the map is

surjective. Suppose, now, that H 6 A(A). We chse a e A such that H(a) d we define a

functionM C(X) C by (f) H(f#). Then it is eily checked that is bounded d line.
Morver, is multiplicative, since

(fg) H(fga)= H(fga)H(a)= n(fga2) H(fa)H(ga)= (0 (g)
for M1 f, g e C(X). Thus, e A(C(X)) d, consequently, there is a unique x e X such that is
evMuation at x. We have, then,

H() (0 (x)
for 1 f e C(X).

We will now show that there exists h e A(Ax) such that H Cx, h
First, we review some facts about the natural embedding of (Ax)* into A*= r()*. The

evMuation map evx A Ax is a quotient map, d consequently the adjoint map
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(eVx)* (Ax)* A* is an isometry. If k e (Ax)* and K (evx)*(k), then

K(r) (evx*(k)}(r) k(evx(r))= k(r(x))
for all r A. Thus, if f e C(X) and r e A,

K(fr) k((fr)(x)) k(f(x) r(x))= f(x) k(r(x)) f(x) K(r).
Conversely, one can show that if K A* and if the equation

K(f,) f(x) K(r)
holds for all f C(X) and r A, then there is a unique k (Ax)* such that K (evx)*(k). (See
Proposition 2.1 of [2].)

Now, consider H again. If f C(X) and r A, then

H(fv) H(fv)H(,)= H(fr,)= H(fa)H(r)= f(x) H(v).
By the preceding paragraph, there is a unique h (Ax)* such that H (evx)*(h) and thus

H() h(,(x))
for all v A. Since H is multiplicative, it immediately follows that h is multiplicative. Hence
h e A(hx) and

H(v) h(v(x)) x, h()"
We have now proved that II can be identified with A(A) in such a way that

F(x, h)= $(x, h h(a(x)) [a(x)] (h)
for all (x, h) f and a q A. From this it follows that the topology on A(Ax) is the same as the

topology which it inherits as a subspace of A(A). (See the proof of condition 1) in Proposition 3.)
We show finally that the map p A(A) X is continuous. Suppose that {(xa her)} is a

net in II A(A) which converges to a point (x, h). Thus

lira (xa, ha) lim ha(a(xa)) (x, h) h(a(x))
for all a A. Choose a Ax such that h(a) and choose r A such that r(x)= a. Then

(.) lim ha(r(xa) h(r(x))= h(a) 1.

Let # C(X). Then

lira ha((# r)(xa))= h(( r)(x)).
But h(( r)(x)) h(#(x) r(x)) (x) h(r(x)) (x), and similarly ha(( r)(xa)) (xa)
ha(r(xa)). Thus

(**) lim (xa) ha(r(xa)) (x).
From (,) and (**)it follows that

lira (xa) lira (xa) ha(r(xa)) (x)
ha(r(xa) (x).

Hence lira xa x in X. I:iX!

The reader will note that there is a result analogous to Proposition 6 to be found in the

theory of bundles of C*-algebras; see, for example [5, p. 582]. Namely, if A X is a bundle of

C*-algebras (with the total space A having continuous norm), then for every irreducible *-
representation T of the C*-algebra r(), there exists x X and an irreducible *-representation S of

Ax such that T S evx The proof of Proposition 6 (which has an evident corollary in

common with the C*-algebra result) requires neither the *-machinery nor the existence of

approximate identities which are used in [5], but, of course, does not deal with non-commutative

algebras.
We consider next two examples. In the first, we show that the map p A(A) X need not

be closed, even if all the fibers Ax have identities. In the second, we show that the map p A(A)
X need not be open, even if x A X is a bundle with identity.
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EXAMPLE 7: Let X [0, 1] and for each x X let Ax be the one-dimensional Banach

algebra C normed by absolute value Then the full direct sum of the family Ax x X} is the

space t(X) of all bounded complex-valued functions on X. We let t be the subalgebra
consisting of all functions f" [0, 1] C such that f is continuous on [0, 1) and limx_.l- f(x) 0

and f(1) is arbitrary). Then it is easily verified that t is a subdirect sum algebra of too(X)
which satisfies conditions (ii) and (iii) of Proposition 2, but not condition (i). (Note that if f t,
then the function x Ill(x)II If(x)l is upper semicontinuous on [0, 1]. On the other hand, the

identity selection e(x) -_- does not belong to 4.)
It is easy to show that A(t) consists of the evaluation functionals evx for x [0, 1]. Thus,

as a point set, A(t) can be identified with [0, 1]. The topologies, however, do not match. In [0,
1] the sequence (n-1)/n converges to 1, whereas in A(a) the corresponding sequence

{eV(n_l)/n} has no limit. (In 4" the sequence converges weak-* to the zero functional.) In
the point ev is isolated. The natural surjection p h(4) X maps evx onto x for each x [0, 1]
However, p is not closed: the set {evx 0 <x < 1} is the complement of the open set {evl} and

hence is closed. Its image under p is [0, 1), and the latter is not closed in [0, 1].
EXAMPLE 8: Let q Y X be a continuous surjective map, where X and Y are compact

Hausdorff. For each x X, set Yx q- l({x}) and Ax C(Yx). Given f C(Y) and x X, we

define f*(x) to be the restriction of f to Yx In this way, 4 C(Y) can be viewed as a subdirect

sum of the family {Ax x X} C(Yx) x X}. (See [6] or [?].) Moreover, satisfies

conditions (i), (ii), and (iii) of Proposition 2. The maximal ideal space of t C(Y) can be

identified with Y, which in turn can be identified with

f={(x,y)’xX,yYx}.
Now, for each (x, y) fl,

p((x, y)) x q(y).
That is, under the identification of A(t) with Y, the map p A(t) X is the same as the given
map q Y X. Since q may not be open, the map p A(M) X need not be open. (For
example, let Y [-1, 2], X= [0, 4], and q(x) x2. Then the set [-1, 1/2) is open in Y, but its

image under q is [0, 1], which is not open in [0, 4].)
We close this section with some simple consequences of our main result.
PROPOSITION 9: Let t A X be a bundle of commutative Banach algebras.
(1) If Ax is semi-simple for each x X, then I’(t) is semi-simple.

(2) Under our identification of A(r(x)) with fl {(x, h) x X, h A(Ax)}, the Silov
boundary of I’(r) is the disjoint union of the Silov boundaries of the fibers Ax

(3) If r A X is a bundle with identity, then for a FOr), the spectrum of is the union

of the spectra of the section values =(x); if t A X is a bundle without identity, then for
a I’0r), the spectrum of a is the union of the spectra of the section values (x) and {0}.
PROOF: All three assertions follow easily from the identity F(x, h) [(x)] (h). We omit the
details. EItII

3. THE ADJUNCTION OF IDENTITIF_ TO BUNDLES OF BANACH ALGEBRAS
If B is a (complex) Banach algebra, then there is a standard way of embedding B into a

Banach algebra with identity. We let B be the vector space B x C with norm and multiplicaton
defined by

(a, A) tall+ AI and (a,A)(b,v) (ab + b + va, A,).
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Then B is a Banach algebra with identity (the pair (0, 1)) which contains a subalgebra, namely

B x {0}, which is isometrically isomorphic to B.
PROPOSITION 10: Let A X be a bundle of Banach algebras. Then there exists a

bundle ’ A’ X of Banach algebras such that

(1) for each x X, (A’)x (Ax)l
(2) for all t, F(,) and f C(X), the selection (a, f) ~" X A’ defined by (tr,f) (x)

(.(x), f(x))
belongs to the section space F(x’) and

(3) F(x’) is a Banach algebra with identity which contains subalgebras isometrically

isomorphic to I’(),

{r(.)}, and C(X).
PROOF: We let M F()x C(X). Then it is easily verified that M becomes a Banach

algebra if the norm and multiplication are defined as follows:

II(,f)ll=,,+llfll, d (o,f) (,g) ( +f +g, fg).
(We have, for instance,

I1(, 0 (-, s)ll
_<, ,,, + f, + g + fg
<,, ,/ f II, , / g II" "/ f g

(,,/ f Ib (, ,+ g II)
=11(,011 II(,g)ll.

Moreover, if we define f (-, g) (fi-, fg) for all f C(X) and (-, g) M, then M becomes a C(X)-
module. We let g B X be the canonical bundle of M as a C(X)-module. We will show that

/ B X is an isomorphic copy of the bundle " A’ X which we seek.

Recall that for each x X, the fiber Bx t,- l({x}) is the quotient space 1’ where

IxM f(t,, g): f Ix, (, g) M} and Ix is the maximal ideal {f C(X): f(x) 0} in C(X).
(The set IxM can also be characterized as the smallest closed subspace Jx of M which contains all

products of the form f (a, g), where f x and (,, g) M. For Jx is clearly an essential Ix
module, and the Banach algebra Ix has an approximate identity, so the Cohen factorization

theorem imphes that Jx IxM.) Moreover, the Gelfand sectional representation ^" M I’(g) is

described by

(, 0 (x)= nx((, 0)
Mfor all (, f) M, where IIx M r- is the natural surjec ion. In this case, the set IxM is a

"x,-- Mclosed two-sided ideal in M, so that Bx is a Banach algebra and IIx is an algebra
homomorphism.

We will now show that for each x X there is a unique isometric isomorphism 4x Bx
(Ax) such that

x((, t) (x))= ((x), f(x))
for all (a, f) M. To that end, consider the map evx M (Ax) defined by

eVx((a f)) (a(x), f(x)). This map is evidently a norm-decreasing algebra homomorphism
whose kernel includes IxM. On the other hand, if (a, f) ker (eVx), then a(x) 0, so a Ixr(
we also have f(x) 0, so f x x C(X). Hence f and a have factorizations f hk and

where g, h Ix, - r(), and k C(X). It follows that (a, f) g (, 0) + h (0, k) IxM, since it

is the sum of two elements of the subspace IxM. Hence ker (eVx) IxM.
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Because ker (evx) IxM there is a unique injective algebra homomorphism ex Bx
(Ax)l
which makes the diagram

commute. Thus,

l[X

evx
(Ax)

Bx

Cx((a, f) (x))= (x Ix)(a, f)= evx((a, f)) (a(x), f(x))

for all (a, f) e M. To show that x is an isometric isomorphism, it suffices to show that evx M

-(hx) is a quotient map. If (z, A) is any element in (Ax) we can choose a e r(x) and f e C(X)

such that a(x) z, f(x) A, ,,ll=lla(x)[l=llxl, and llfll= If(x)l lal. (We could, for instance,

let f have the constant

value ,.) Then

and

evx((,,f)) (,(x), f(x)) (z, A)

0 + Ilfll z + I1( ,  )ll-
This proves that evx M (Ax) is a quotient map.

We now let A’ be the disjoint union

A’= (x,z):xX,z(Ax)l
and let ’ A X be the coordinate projection. Then our family of isometric isomorphisms

Sx" Bx (Ax) gives us a bijective map " B A’ which makes the diagram

B

X

commute. (In other words, restricted to the fiber Bx is just Cx .) We use the map to

transfer the topology on the fiber space B to A’. Then :r’ A’ X becomes a bundle of Banach

algebras which is bundle isomorphic to/, B X. If (a, f) M, then the selection (a, f) ~: X
A’ defined by (a, f)~ (x) (a(x), f(x)) is just o(a, f)^ and hence is in the section space r(,’).

The maps

:r(.)-- r(.’), ()= (,o);

: {r(.)} r(.’), t((a,))= (,A)~;and
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. c(x) r(,’), (f) (0, f)

are clearly isometric algebra homomorphisms. 13[3Ei

We conclude with an unrelated result.

If A X is a bundle of Banach spaces, and if a F(x), then the numerical function

f(x) ]]a(x)]] is upper semicontinuous on X. If x" A X is a bundle of Banach algebras we will

show that the same is true of the function g(x) ]]a(x)]] sp, where Ilall sp denotes the spectral

radius of a.

PROPOSITION 11: Let A X be a bundle of Banach algebras, and let a ( F(r). Then

the function g(x) Ila(x)II sp is upper semicontinuous on X. Moreover, if the algebras {hx

x E X} are all commutative (so that r()is commutative), then ,, sp sup Ila(x)I sp" x X}.

PROOF: Let x0 X, and let > 0 be given. Since

II-(=0) + =f -(x0))= x/" lim (-(x0))" 1/n

we can choose a positive integer n such that II(x0)ll / < II(x0)ll sp / /. Now,

II(())=ll-II(x)ll is = pp= semicontinuous function of x, and hence the same is true of

II((=))=ll /=. Thus, there is a neighborhood V of x0 such that

for all x E V. Consequently,

ll,,(:,<:)ll sp -< ll(,,.(x))"ll ’/’’ < II,,(xo)II sp.++
for all x V, thus proving that the function g(x) ll,,-(x)II +p is upper semicontinuous at x0

The assertion in the case when all algebras Ax are commutative follows easily from 1)

Proposition 6;

2) the fact that, if B is any Banach algebra, then for b B, we have

Ilbll sp max Inl n Sp(b) (where Sp(b) denotes the spectrum of b) (see e.g. [8, p. 23]); and

3) the fact that, if B is a commutative Banach algebra, and if b B, then the range of its Gelfand

transform b is either Sp(b) or Sp(b)\{0}. mO
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