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ABSTRACT. Using the properties of almost nonexpansive curves introduced by B. Djafari

Rouhani, we study the asymptotic behavior of solutions of nonlinear functional differential

equation du(t)/dt + Au(t)+ G(u)(t) f(t), where A is a maximal monotone operator in a nilbert

space H,f E LI(0,:H) and G:C([O,c):D(A))LI(O,c:H)is a given mapping.
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1. INTRODUCTION.
Let H be a real Hilbert space. We consider the initial value problem

du(t)
dt + Au(t) + G(u)(t) 9 f(t), 0 < < c

(1.1)
u(0) ,

where A is a maximal monotone (possibly multivalued) operator defined on a subset D(A)
contained in H, x E D(A),f E Loc ([0,c):H) and G is a given mapping

G:C([O,T]:D(A))LI(O,T:H), for all T > 0. (1.2)

Problems of the type (1.1) have been considered by many authors (see [1]-[7]). Crandall and

Nohel [4] treated the problem in connection with the study of a related nonlinear Volterra

equation, and obtained the existence result of generalized solution of (1.1), provided that G
satisfies a Lipschitz type condition. In particular, under some suitable hypotheses on A and G,
Aizicovici [1] obtained nice asymptotic results of generalized solutions of (1.1), which are the
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natural analogs of the evolution case (i.e., G 0). Using the convergence condition of Pazy [8],
Mitidieri [5] studied the strong convergence of solutions of (1.1).

The purpose of this paper is to continue the study initiated by Aizicovici, using the

properties of almost nonexpansive curve, which was introduced by Djafari Rouhani [9]. In
section 2, we describe the notations and contain some definitions and known results. Section 3

contains the several results [Theorem 1, 2, Corollary 1] concerning the asymptotic behavior of

almost nonexpansive curve. Main results are given in Section 4. First we establish criterions for

the weak convergence in H, as to of generalized solutions of (1.1) [Theorem 3, Corollary 3].
Next, we study the weak convergence of the Ceshro mean of the generalized solutions [Theorem
4].
9.. PRELIMINARIIS.

Let H be a real Hilbert space with inner product (,) and norm II. Let m be maximal

monotone (possibly multivalued) operator defined on subset D(A) C H.
As usual, we will put [z,V] 5 A//E Az. We denote by F the (possibly empty) set

F A-’0 {: D(A), a% 0}

where Ag denotes the element of minimum norm in the closed convex set Ay. Clearly, F is a

closed convex subset of H. For background material concerning maximal monotone operators,

see [10], [11].
We will use "w-lira" or "-" to indicate weak convergence in H. The symbol D denotes

the closure of the set D. For a function u: [0, c)H, we denote by Ww(U(t)) the weak -limit set

of u, i.e.,

w(u(t)) {y H: y w- lira u(t,) for some sequence

and by -e-dw.,(u(t)) the closed convex hull of w(u(t)), respectively. Let u:[0, cx)H be a bounded

function. With the function u(t), we associate the functional

(y) lim sup u(t)- y =-
t--*OO

Then is a continuous, strictly convex function on H, satisfying (y)x as u II--’, d
therefore has a unique minimum in H. The unique point c E H satisfying

(c) min (y)

is called the asymptotic center of u(t) and it is denoted by c AC(u(t)).
Consider now the initial value problem (1.1), where G satisfies (1.2), z e D(A) and

f Lkc([0,cx):H). We recall the following definitions ([1], [4]).
11DEFINITION 1. A strong solution of (1.1) on [0,c) is a function u

_
Wtoc([O,):H)

C([O,):D(A)), satisfying u(0)= x and du(t)/dt + Au(t)+ G(u)(t)9 f(t), a.e. on [0,).
DEFITION 2. A function u C([O,):D(A))is sMd to be a generMized solution to

equation (1.1) if there e sequences x, D(A), f. Lo([0,): H) d u, C([0, ): H) such

that u, is a strong solution of

du
dt + au, + G(u,) 9 f,

u.(0) z.,

z,z,f,f in La(O,T:H) =d u,u in C([O,T]: H), for each 0 < T < .
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The following existence result is well-known ([1], [4]).
PROPOSITION 1. Let G satisfy (1.2) and assume that"

(i) There exists 7 Lo([O, oo):R) such that for every u,v e C([O, oo):D(A)),

G(ll)-a(v) Ll(o,t:H) -- 7(,s) u-- v L(o,s:H)dS, 0 _< 8 _< < oc. (2.1)
o

(ii) For each T E (0,oc), there is CT:[0,oo)---,[0,oo such that if u C([O,T]:D(A))is of

bounded variation and u LOO{0, T:H) - R, then

and

var(G(u):[O,t]) < or(R)(1 + var(u:[O,t])),

G(u)(O +)II < T(R)

0 _< _< T (2.2)

where

r, 8, h > O,
u( / h)-( / h)II < u() u()II / (, ),

tim (r,s) 0.

REMARK 1. (a) A nonexpansive curve {u(t)} (i.e., for any r, s, h > 0, I1=( +)
u(s / h)II -< u()- u(s)II) is an ANEC.

(b) A bounded curve {u(t)} that satisfies

u( / h)- .( / h)II -< II-()-"() /

for any r, s, h > 0, where lim,,o.oo e,(r,s) 0, is an ANEC.
In our next results, we will use the following notation:

E(u(t)) {q e H:lim u(t)-q exists}.

Note that if E(u(t)) # , then curve {u(t)} is bounded.

LEMMA 1. Let {u(t)} be an ANEC in H and p fi H. Then for any l, r > 0,

2(u(/)- u(l + r), /’ u(r)dr- p)
o

-< =() p I1’ u(l + r) p I1’ +/" u(l + r) u(r)II ’dr
0

+ (l, r r)dr.

Then,
/a) For each z 6 D/A) and f BVocl[O, oo):H), problem 1.1) has a unique strong solution

defined on [0, o).
(b) For each z E D(A)and f Loc([O, oo):H), problem (1.1) has a unique generalized

solution defined on [0,).
3. ASYMPTOTIC BEHAVIOR OF CURVES IN H.

In this section, we study asymptotic behavior of almost nonexpansive curve, which was

introduced by Djafari Rouhani [9]. The following results are essentially in spirit of Djafari

Rouhani. For the study and completeness, we give several results similar to those in [9] with

detail and slightly different proofs.
Let uC([O, oo):H); in the sequel we refer to such u as a curve in H. Let

tr(t) (l/t)Stu(r)dr. We begin with the following:
0

DEFINITION 3 [9]. The curve u(t) is almost nonexpansive (abbreviated ANEC) if for any
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PROOF. Let a(t)= (l/t) u(r)dr. Note that for any 1, r > 0,
o

,() p ,(z + ,) p / u(l + r) a(t)II ,(Z) ,()II .
Since

o
and

o
we obtain for any l, r >_ O,

-: (z)- u()II d
o

o

0
and ghe prf is complete.

LNN 2. Let {u(O} be a bonaeac in H and let AC(u(t)) be the ymptotic center

(a) Let {u()} be a subnet o {u(O}
exists, then p

(b) If w -lim,u() exisgs, then w lim,u()
PROON. Let AC(u())= c. Note ghat for

=(t) c =(t) z + z + 2(-(0 z,z )

> =(e)- z + 2(=()- ,z-c). (3.1)

To prove (a), let w-tim,_oou(t.)= p and (11 =(t)-P II} be convergent. Letting t-,c in (3.1)
with z replaced by p, we have

(c) > lim (t)- p + 2 lira sup (u(t) p, p c).
t--oo

t--*Oo

si, i, ,p,-.(,(O p. p />- im._((.) . p /= 0. w h,

(c) > lira (t)- p

i.e., (c) > (p). Thus it follows from definition of c that c p.

To prove (b), let w- lim,.oou(t) q. Letting t--o in (3.1) with z replaced by q, we have

(c) > im =p =(t)-q + 2 {i (=(t)- q, q- c) (q).

This implies that c q.

LEMMA 3 [9]. Let {u(t)} be an ANEC in H. If
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w lira (u(t + h) u(t)) 0

for any h > 0, then ww(u(t)) C E(u(t)). In particular, if ww(u(t)) O, then {u(t)} is bounded.

PROOF. Let p Ew(u(t)). Then there exists a sequence t,,---}cxa such that

w- lim,...u(t,) p. On the other hand, by Lemma 1, we have the inequality

2(u(r)- u(r + a), /t,,(t, + r)dr- p)
0

-< u()- p u( + )- + u( + )- u( + r)II
0

+ (r, t, + r- s)dr

< Ilu(r)-pll II(v+s)-pll+ M(a’v) + e(r,t,+r-s)dr

for any r, s > 0, > 0, n > 1, where M(s,r) is a constant depending only on s and r. Let e > 0

be given, and choose > 0 so that

e(/, t) < e

for all h, > I. Then, taking r > l, s > 0, > 0 fixed, and letting n---}oo, i.e., t,,--}cxa, we have

0 < u()- p u(r + s)- p /
M(s, r)

for any r > l, a > 0, > 0. Now letting t-}m, we obtain

for any r _> and s > 0. Hence

for any r > l. Thus

lim sup u(t)- p < u()- p +t--x

limt.oosup u(t)- p _< *im,_.i =(t)- +,

w- lim (u(t + h)- u(t)) 0

for any h > 0. It follows from Lemma 3 that ,,o(u(t))C E(u(t)), and hence (i) implies (ii). To
show that (ii) implies (i), let E(u(t)) and ww(u(t)) C E(u(t)). By E(u(t)) , {u(t)} is

bounded. Then since a Hilbert space is reflexive, {u(t)} has a subnet {u(t,)} which converges
weakly to some p H. By tv,(u(t)) C E(u(t)), { u(t)- p } ia convergent. It follows from (a) of

Lemma 2 that p= AC(u(t)). This means that tvw(u(t))= {AC(u(t))}. Thus every weakly
convergent subnet of {u(t)} converges weakly to AC(u(t)) and hence w- limt_oou(t AC(u(t)).

As a direct consequence of Lemma 3 and Theorem 1, we have the following:
COROLLARY 1. Let {u(t)} be an ANEC. Then the following condition

which implies that limt_oo =(t)- p exists and hence p e E(u(t)).
THEOREM 1. Let {u(t)} be an ANEC in H. Then the following are equivalent:

(i) w limt.ou(t exists.

(ii) E(u(t)) and wo(u(t)) C E(u(t)).
Moreover, if w- limt.u(t exists, then it is the asymptotic center of {u(t)}.

PROOF. Suppose that w- limt_.oou(t) exists. Then w,(u(t)) # and
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(iii) E(u(t)) and w limt_.o(u(t + h)- u(t)) 0 for any h > 0 is equivalent to each one

of conditions (i) and (ii) in Theorem 1.

We turn now to the weak convergence of Cesro mean a(t) of curve {u(t)}. The following
lemma is the principal ingredient.

LEMMA 4. Let {u(t)} be an ANEC. Then

,,.((t)) c E((t)).

PROOF. Let p e(a(t)). Then there exists a sequence

w- lim.oa(t,)= p. By Lemma 1, we have the inequality

such that

2(u(r)- u(r + s),a(t,)- p)

1/.< ()- p - (+ )- p + (+ )- ()II d
0

1/%
for any r, s _> 0. Let e > 0 be given and choose > 0 so that

e(h,t) <

for all h, > I. Then taking r > l, s > 0 fixed and letting t,oo, we obtain

u( / ,)- p _< u()- p /,

Therefore by the same argument as in Lemma 3, we conclude that limt_.o u(t)- p exists and

hence p E(u(t)).
We also prepare a lemma; see also [12].
LEMMA 5. E(u(t))rl rlo>oC-d{u(t):t > s} contains at most a singleton. If E(u(t))rl f3o>0C

{u(t):t > s} # t, then

{AC(u(t))} E(u(t)) fl -c-d{u(t):t >_ s}.
>0

PROOF. Note that I’lo>o-d{u(t):t > s} =-d-dww(u(t)); see [13]. Let ql, q2 ww(u(t)) and

Pl, P2 E(u(t)). Then we have

im (t)- p, (p,)
t--*OO

fori=l, 2and

u(t)- p (t)- px + px- pz + 2(u(t)- pl, px p).

is at most a singleton. Let {p} E(u(t))n N,>0{,(t):t >_ s}. Since p E(u(t)), we have

lira u(t)- p

Thus
(p) (p)/ p, p + 2(q p,p p2)

(p) (p) / p, p / 2(q pa, pl P).

Hence by subtraction, we have (q-q,p- p2)= 0. This result extends obviously to every

q,q -dw,o(u(t)). Therefore it follows that if p, p E(u(t))fq’e-dw(u(t)), then pl p, and

hence

E(u(t))n n _> ,} E(u(t))f3-e-6w(u(t))
o>0



NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 709

Let q (5 ww(u(t)), q w- hmtk_oou(tk) and let u (5 H. Passing to the limit as tk--oo in

.(t)- u ,,(t)- p + p- u + (u(t)- p, p- u),

we find
(u) > (p) + 2(q- p, p- u).

This inequality holds for all q(sw,,(u(t)), and hence, also for all
p (5 -6Ww(U(t)), we obtain

if(u) >_ (p)

Since

for all u (5 H. This implies that p AC(u(t)).
THEOREM 2. Let {u(t)} be an ANEC in H. Then the following are equivalent:

(i) w -limt_a(t) exists.

(ii) E(u(t)) O.
Moreover, if w- lirnt_a(t exists, then it is the ymptotic center of {u(t)}.

PROOF. Suppose that w- limt_a(t exists. Then ww(a(t)) O. It follows from Lemma 4

that (a(t))C S(u(t)) and hence (i) implies (hi). To show that (hi) implies (i), let E(u(t)) .
Then {u(t)} is bounded, and hence {a(t)} is also bounded. Then since a Hilbert space is reflexive,

{a(t)} has a subnet {a(tn) which converges wetly to some pH. By Lemma 4,

w(a(t)) C E(u(t)), and so p S(u(t)). If there w another subnet {a(h)} which converges

weakly to some q e H, then we Mso have q e E(u(t)). Hence the net

2(u(t),q p) + P q =(t)- p =(t)- q

has a limit as t--}o, i.e., limt,oo(u(t), q- p) exists. Therefore (p, q p) (q, q- p), which implies

p-q 0, d hence p q. Hence every weakly convergent subnet of a(t) converges weakly
to p, and hence w limt_ooa(t p. We obviously have p (5 E(u(t)) fl fqo > o--5
{u(t):t > s} E(u(t))fq-d-6ww(u(t)). Therefore it follows from Lemma 5 that p is the asymptotic

center of {u(t)}.
4. ASYMPTOTIC BEHAVIOR OF SOLUTIONS IN H.

In this section, we give the main results concerning the asymptotic behavior, as t--oo of

generalized solutions of (1.1). Following Aizicovici [1], we assume the following conditions:

(C1) G satisfies (1.2), (2.1) and (2.2).
(C2) For every u, v (5 C([O, oo):D(A)),

f’(G(u)O)- G(,,)0), ,0)- ,0))d >_ 0, 0 <_, _< < .
H) for each constt function v(t) v D(A).(C3) G(v) L (0,:

(C4) f L’(0,:H).
(c5) e D(A).
We begin with a simple lemma which will play a cruciM role in our results.

LEMMA 6. Let A be a mimM monotone operator on H. Assume that (C1) holds. Let f,

f Lo([O,):H) d x, D(A). Let u, be the corresnding generMized solutions of (1.1).
If (C2) is satisfied, then

(t)- (t)II 5 (,)- ()II + f’ Y()- ()II d (.x)

for 0GsGt<.
PROOF. Ting into account definitions 1 d 2, well Proposition 1, it clely sces

to prove (4.1) in the ce that u d e strong solutions of (1.1). By the monotonicity of A,
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we ha,ve

0 < (f(t) u’(t) G(u)(t) ](t) + ff’(t) + G()(t), u(t) (t))

(f(t) ](t), u(t) fi(t)) (u’(t) ’(t), u(t) (t))

(G(u)(t) G()(t), u(t) (t))

_< f(t)- j(t)II (t)- (t)II -1/2 u(t)- (t)II

-(G(u)(t)-G()(t),u(t)- (t))

for > 0. Integrating on [s,t], it follows from (C2) that

a(t)II < 1/2 =()- a()II + [ f(r)- f(r)II ()- a()II dr. (4.2)u(l)

The inequMity (4.1) follows from (4.2) by Gronwall’s lemma (see [4, Lemma A.5]).
COROLLARY 2. Let A be a mimal monotone operator on H, d f e Lo([O,):H).

Assume that (C1), (C2), (C3) =d (C5) hold. If u is a generMized solution of (1.1), then

PROOF. It is enough to apply Lemma 6 with f(t) f(t + (r- s)) d (t) u(t + (r- s)).
PROPOSITION 2. Let A be a maximal monotone operator on H. Assume that (C1), (C2),

(C3), (C4) d (C5) hold. If u is a generalized solution of (1.1) d if {u(t)} is bounded on [0,),
then the curve {u(t)} is an ANEC in H.

PROOF. By (C4), we have

r>s

Thus the result follows from Corollary 2 and Remark 1 (b) by taking

[ f(r + (r- s))- f(r)II d f _>
(,) .o

] f(r + (r- s))- f(r)11 dr if s > r.

Now, we apply Theorem 1 and 2 to study the asymptotic behavior of the generalized
solution u of (1.1). We need the next known result.

LEMMA 7 [1]. Let A be a maximal monotone operator on H. Assume that (C1), (C2),
(C3) and (C5) hold. Let u be the generalized solution of (1.1) corresponding to

f L/oc([0, cx): H). Then

u(t) y <- u() / -/’ f(7") G(y)(’) z d, (4.3)

whenever 0 < s < < cx and z Ay.
The following is also necessary. We contain the proof for the completeness (see also [1]).
LEMMA 8. Let A be a maximal monotone operator on H. Assume that (C1), (C2), (C3),

(4) and (C5) hold. Let u be a generalized solution of (1.1). Then F C E(u(t)).
PROOF. Let y F. By (4.3) in Lemma 7,

=(t) - - / f(r) G(y)(r)II d
0

for >_ 0. Thus, using (C3) and (C4), we deduce that {u(t)} is bounded on [0,oo). Also it follows

from (4.3) in Lemma 7 that

u(t) y --/t[[ f(v) G(y)(v)1[ dv
o

-< u() f(7-) C(y)(’)II dr, 0 _< s _< < c. (4.4)
0
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This (4.4), (C3), (C4) and the boundedness of u imply that the function

(t) ,()- f* f()-G()()II d is bounded on [0,oo). By (4.4), it is also
0

nonincreasing. Therefore, again, taking into account (C3) and (C4), we have that

limt_ u(t)- y exists and hence y E E(u(t)).
THEOREM 3. Let A be a maximal monotone operator on H. Assume that (C1), (C2),

(C3), (C4) and (C5) hold. Let u be a generalized solution of (1.1). Then the following are

equivalent:

(i) w -lira u(t) exists.

(ii) E(u(t)) and wo(u(t)) C E(u(t)).
PROOF. Since {u(t)} is bounded under each condition of (i) and (ii), {u(t)} is an ANEC by

Proposition 2. Thus the result follows from Theorem 1.

COROLLARY 3. Let A be a maximal monotone operator on H. Assume that (C1), (C2),
(C3), (C4) and (C5) hold. Let u be a generalized solution of (1.1). Then the following condition

(iii) E(u(t)) and w lira,_oo(U(t + h) u(t)) 0 for any h > 0 is equivalent to each one

of conditions (i) and (ii)in Theorem 3.

PROOF. The result follows from Corollary and Theorem 3.

As a direct consequence, we have the following:

COROLLARY 4. Let A be a maximal monotone operator on H. Assume that (C1), (C2),
(C3), (C4) and (C5) hold. Let u be a generalized solution of (1.1). If F and

w-limt_.oo(u(t+h)-u(t))=O for any h >0, then u(t)converges weakly as t--.oo to the

asymptotic center of the curve {u(t)}.
PROOF. By Lemma 8, we have F C E(u(t)). Thus the result follows from Theorem 1 and

Corollary 3.

THEOREM 4. Let A be a maximal monotone operator on H. Assume that (C1), (C2),
and (C5) hold. Let u be generalized solution of (1.1), and a(t)= f.tu(r)dr. If(C3), (C4)

E(u(t)) J, then a(t) converges weakly as t--, to the asymptotic center of the curve {u(t)}.
PROOF. Since {u(t)} is onnded y E(u(t))# , {u(t)} is n ANEC y Proposition 2.

Thus the result follows from Theorem 2.

As a consequence, we also have the following:

COROLLARY 5. Let A be a maximal monotone operator on H. Assume that (C1), (C2),
and (C5) hold. Let u be a generalized solution of (1.1) and.a(t)= fotU(r)dr. If(C3), (C4)

F , then a(t) converges weakly as too to the asymptotic center of the curve {u(t)}.
PROOF. By Lemma S, we have F C E(u(t)). Thus the result follows from Theorem 4.

lMARK 2. (a) Under the hypotheses of Theorem 3, the fact that the following condition

(iv) F - } and ww(u(t)) C F is

is equivalent to (i) in Theorem 3 was proved by Aizicovici [1]. Consequently, all the conditions

(i) and (ii)in Theorem 3, (iii)in Corollary 3 and this (iv) are equivalent.

(b) The case in which G _=0 was previously considered by Moros.anu [14] and Djafari

Rouhani [9]. Theorem 3 is a new result even in the case in which G 0.

(c) Properties of the metric projection were not used in Theorem 4 in contrast to ([1,
Theorem 2.3]).

(d) As in [1], [5], [6], [15], [16], our results can be used to study the asymptotic behavior of

solutions of the related nonlinear Volterra equation:
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u(t) + /tb(t- s)Au(s)ds g(t),
o

(o) (o).

t>O
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