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ABSTRACT. In this paper, a fully parallel method for finding all eigenvalues of
a real matrix pencil (A, B) is given, where A and B are real symmetric
tridiagonal and B is positive definite. The method is based on the homotopy
continuation coupled with the strategy ‘Divide-Conquer’ and Laguerre iterations.
The numerical results obtained from implementation of this method on both single
and multiprocessor computers are presented. It appears that our method is
strongly competitive with other methods. The natural parallelism of our
algorithm makes it an excellent candidate for a variety of advanced

architectures.
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1. INTRODUCTION.
When B is a well-conditioned positive definite matrix, real symmetric

generalized eigenvalue problem

Az = )ABz (1)
can be reduced to the form
(2
L= YAL~T(LTz) = N(LTz)

where A and B are real nxn symmetric matrices and B=LLT. There are many very
efficient algorithms for (2), for instant, the QR algorithm [8], the D&C
algorithm [3], the bisection algorithm [5] and the homotopy algorithm [6]. When
A and B are both tridiagonal the above technique is unattractive because
L™'AL-T jis, in general, a full matrix.

In this paper, we shall present a parallel homotopy method for finding all
the eigenvalues or all eigenpairs of a matrix pencil (4,B), where A and B are

both real symmetric tridiagonal and B is positive definite. Assume in (1),
! o B ( ™ )
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If B;=7;=0 for some i, then (1) can clearly be decomposed into two
subproblems and we can solve them independently. Hence, we will assume all B; and

7; are not both equal to zero.

Let
[ A4 o
where
@ h ) %+1 Prta )
By a3 B B4, %42 Prys
Al_ ’Az- ’
By 1ok _ 1P Bp—1 an 1By
ﬂk Ok } \ By °y
(5)
D= Bl 0
0 B, )
where
(& ) (5k+1 Tk+3
72 6 1 e+ k42 Vk4a
B, = , By =
Te-18%-1 W -1 Sn—1 Ty
\ & 6b \ Tn 6J

Consider the homotopy H:Rx[0 , 1] —= R, defined by

H(A\,1) = det((1- t)(C — AD) + (A — AB))
= det(A(t) - AB(t)),

vhere A(t) = (1-1)C+tA and B(t) = (1-t)D+tB. The pencil (C,D) is called an initial
pencil .

In section 2, we shall show that the solution set of H(\t)=0 in (6) consists
of continuously differentiable curves A(t), each joins an eigenvalue of (C,D) to
one of (A,B). VWe call each of these curves a Aomotopy curve or an eigencerve. We
shall also show that each eigenvalue curve is monotonic in t. And if m, the
multiplicity of an eigencurve A(t) is greater than one in any subinterval of
[0,1], then it must be a constant curve. In the consequence, it is an eigenvalue
of (A,B) of multiplicity of m or m+1. We shall give the details of our
algorithm in section 3 and some numerical results will be presented in section 4.
2. PRELIMINARY ANALYSIS

Proposition 2.1. Let H (A, 1) be defined as in (6), then the solutson set of H(A, t) = O consists

of real, tinsously differentiable eigencurves.
'’ c 4

PROOF. First of all , we show that A(t), a solution of H(A(t), t) = 0 is real
for any t in [0,1]. Since H(A(t),t) = det(A(t)—A(t)B(t)), we only need to show that
B(t) is positive definite for all t in [0,1]. Let );(¢) be the smallest eigenvalue
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of B(t), then by Cauchy’s interlace theorem [8], A,(0) > A/(t) for all t in (0,1].
By Proposition 2.1 in [6], A/(t) is strictly monotonic in t. Therefore, A/(t) is
strictly monotone decreasing in t. Hence A;(t) > A\ (1) > 0 for all t in [0,1)
since B(1) = B is positive definite. lence B(t) is positive definite for all t in
[o,1].

Now we show that A(t) is continuously differentiable. Clearly, H(At) can be
written as:

HO(),1) = cy(OA™ () +cpy (DA TI(E) + -+ + ¢ (D)A() + co(0),

where c,(t)’s are polynomials in t. Let A(t) be a solution of H(A(t),t) = 0 and ¢,
any point in (0,1). By Puiseux’s theorem [10],

1 2
Mto+€) = AM(tg)+byeh + bych

+ e

converges for sufficiently small ¢. Let b, denote the first nonzero coefficient,
then

Mg +€) = Mtg)

i e

is real since A(f5+¢), A(%y) and € are all real. On the other hand,

m A1, -
(-1 bp=1jn Mot9)-i)
€—0— (—()r
A m
is also real. Hence, (-—l)T is a real number. Therefore, m must be a multiple
of h. We can continue the same argument to show that only integral powers of ¢
can have nonzero coefficients. Therefore, A(tg+e) = Z

i=o 4. Hence, A(1) is

continuously differentiable. Q.E.D

PROPOSITION 2.2. Any eigencurve A(1) of (A(t), B(t) ) is either straight line or stricily monotonic
it
PROOF: Since

I
|
A(t)=MB(t)=| ——————— it ,
I
|

vhere a = ﬁk+l —A(t)yk_H, there exist polynomials f,(A) and fy3()) such that
H\t) = f,(0) = 2f,(A). If there exists a )y such that f,(A) = O, then H(X,?)=0
implies f;(%) = 0. Hence H()\,t) = O for all t in [0,1]. Therefore, A(t) = ) for
all t in [0,1], i.e., A(t) is a straight line.

If for any A, f,(A) #0, then H(A,t)=0 has at most one solution in [0,1].
Therefore, A(t) must be strictly monotonic in t. Otherwise, for certain )y,
H()\;,t)=0 will have more than one solution in [0,1] (See Figure 1).

0.E.D.
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A()

Figure 1

Let m(X(t)) denote the multiplicity of A(t). Proposition 2.2 implies that if
m(A(t)) = 1 and there are t; and t, in [0,1] such that A(t)) = A(t,), where t; #¢t,,
then A(t) must be constant.

PROPOSITION 2.3. Let A(t) be an esgencurve. If [a,b] 15 a subinterval of (0,1] and m(A(t)) = m > I,
for any t in [a,b], then A(1) = A(0) and A(0) 15 an esgenvalue of matriz pencil (A, B) of multsphicaty of m or m
+ 1.

PROOF. Claim 1: X(t)= ), for some constant ),, for t in [a,b].

Let t;,, 8, - ,t, be n distinct points in . [a,b]. Since rank
(A(t)-Mt)B(t)) =n-m<n—1 for any t in [a,b] and A(t)—A(t)B(t) is symmetric
tridiagonal, at least one of the off-diagonal elements of A(t) - A(t)B(t), say
Bs—Mt)r,, is equal to zero at two points, say t; and tj. Otherwise, rank
(A(t)-Xt)B(t))>n—1. Hence, Bs—A(t;)1s=0 and ﬂ,—A(tj)7,=0. Since B; and 74 are
not both equal to zero, A(ti)=A(tj). Hence, A(t) =)y for some constant )y, for any ¢
in [a,b] by Proposition 2.2.

Claim 2: rank(A(t)—2B(t))=n-m for all t in (0,1] except at possible one point
in (0,1] renk(A(t)—AgB(t)) =n—-m-1.

If By~ 4,=0, then clearly, rank(A(t) - A B(t)) =n-m for all,t in (0,1].
If ﬁk+1_‘\°7k+l#o’ since some off diagonal elements of A(t)— )y B(t) are equal to
zero, A(t)—AyB(t) can be rewritten as:

4, - 2B,
A(t) - AB(t) = Ag(t) - AgBy(t)

Az~ AgBjy

where Ay(t)—AgBy(t) is unreduced symmetric tridiagonal, i.e., all its off-diagonal
elements are not equal to zero.
Hence,
rank(A(t) —XoB(1) ) = rank(A; —XgB,) + rank(Ay(1) — AoB, (1)).
+ rank(A3 —XgB;)

Clearly, rank(A; —XAgB;) +rank(Az—X;B;) is constant. Assume rank(A,(t) — AgB,(t)) = my
for some integer my for all t in [a,b]. Since (Ay(t)—XyB,(t)) is a unreduced
symmetric tridiagonal matrix, its eigencurves are smooth, disjoint and monotonic

in t by Proposition 2.1 in [6]. Therefore, if pu(t) is an eigencurve of
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(Ay(t) = XoBy(1)), i.e., det((Ay(t)—XgBy(t)) —u(t)) = O, then either u(t) =0 or there is
at most one t such that pu(t) = 0. Hence, if zero is an eigenvalue of (A,(t)
—XBy(t)) for some t in [a,b], then u(t) = O is an eigenvalue for any t in [0,1]
since rank(Ay(t) —AyB,(t)) =my for all t in [a,b]. Therefore, rank(A,(t) —AoB,(t))=m,
for all t in (0,1]. If for any t in (0,1], zero is not an eigenvalue of
(Ay(1) = AgB,(1)), then rank(A,(t) —XgBy(t)) = my. Hence, rank(A,(t) —AgBy(t)) =n—-m for
all t in (0,1] in these two cases. If for any t in [a,b], zero is not an
eigenvalue of(A,(t) —)gB,(t)), then clearly, there is at most one t in (0,1] such
that rank(A;(t) — AgBy(t)) = my—1.

Hence, A(t) is constant for all t in [0,1] and A(0) is an eigenvalue of (A,B)
of multiplicity of m or m+1.

Q.E.D.
From Proposition 2.3, we will not have any those bifurcation curves in Figure
2. ’
If A(t) is not constant, then its multiplicity must be 1.
Let ,\l(i), A (1), ... 5, An(t) be n eigencurves of (A(t),B(t)), where A;(0) < A;(0)
<y ey < A(0).

A N

N\

Figure 2

PROPOSITION 2.4. Let A(t) and ); | ,(t) be two nonconstant eigencurves of (A(t), B(t)). If (%)
< X4 (%) for some ty in (0,1], then A(t) < X; o ((¢) for all tin (0,1).

PROOF. From Proposition 2.2 and 2.3, both )\(t) and );  ,(t) must be strictly
monotonic in t. Assume A(t) and ’\i+1(t) are both strictly monotone increasing. If
there exists a t; in (0,1] such that A(t) and ,\.'+1(t,), then A(t)) and ’\i+1(0) since
Ai44() is strictly monotonic in t. Therefore, t; > 0 is a solution of
H("i+l(°)’¢)=0 (See Figure 3). By Proposition 2.2, X;,,(f) is a constant.

Contradiction.

z’i+f0)
A; O
=0 2 4 t=1
Figure 3

Similarly, if A(t) and Ai 4,(t) are both strictly monotone decreasing, then the

conclusion holds.
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Assume Ai(t) is monotone increasing and '\i+l(¢) monotone decreasing, then
Ai(0)<;\i+l(0). If there is a t; >0 such that A(ty) and ’\i+|('l)’ then there exists a
t3 > t such that ’\i+|(tl)<’\i(‘2)<’\i+1(0)' Since A.-_H(t) is continuous and
"5+1(‘-)<".'+ 1(t)<)«'-_,_l(0) for any ¢ in (0, ), there is a t; in (0, t,) such that
Ai +1(t) = X1;) (See Figure 4), then H(A\(t),t) =0 has two solutions. Therefore,
either A(t) or Ai 4,(t) must be constant. Contradiction.

Clearly, if '\i+l(t) is increasing and Ai(t) decreasing, then the conclusion

holds since 2,(0) < ‘\i+l(0)' Q.E.D.

4.0

A, ©)

=0 t=1
Figure 4
From Proposition 2.4, if A(t) and A;4+1(t) are both constants or both are not
constants, then they must be disjoint. However, if one of them is constant, they
may cross.

Example 1.

410 410
A=|11 4], B=|130
041 003
Let 41 0 410
At)=|1 1 4 |, Bt)={1 30|,
0 4t 1 003

then (A(t),B(t)) has three eigencurves:

A (t) = 2= VAT 8adss?
="

’

20 + /4 + 8448¢2
'\2(') = — % >
and A3=1.

From these pPropositions, we know that all eigenvalues of the initial pencil not
only close to the eigenvalues of pencil (A,B), but also separate them. These
results provide us very important information in designing our code.

(See Figure 5).
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A
1.696
1 _—/ 1
0.333
0273 b——m———o_ -
t
-1.090
1= =1

Figure 5
3. ALGORITHM

Our algorithm is based on following steps.

(i) Form initial matrix pencil.

For a given matrix pencils (A4,B), let k=[n/2], then form an initial matrix
pencil as in (4) and (5) in Section 1. If k is greater than 2, repeat above
procedure on those submatrices, until the dimension of each submatrices is less
than or equal to 2. Now, (C,D) is the initial matrix pencil, where C = dxay(A,’l,
Ag 25 s A,’p) and D = diag(E,',, Bg g eeuy B"P),p=2' for some positive integer s. We
have a tree (See Figure 6).

(A.B)

UrBy) AaBg) | - A8 A Bp)

Figure 6
(i) Compute all eigenvalues of (C,D).

e P
B,;) can

Compute the eigenvalues of each submatrix pencil (A. i Byy)s i=1, 2,
1 1
Since A,; and B,; are at most 2x2 matrices, the eigenvalues of pencil (4
be easily obtained.

81"

(i) Conquer.

After all the eigenvalues of each submatrix pencil (A“,B”-) i = 1,2,..,p are
available, we then compute all the eigenvalues of each submatrix pencil (4,
B“-), i=1,2,..,p/2 by simple step homotopy method with Laguerre iterationms.

It is sufficient to assume that all the eigenvalues of matrix pencils (A4,
B;,) and (A;3, B;;) are available and we want to compute all eigenvalues of matrix

pencil (A,B).
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Let

Construct a homotopy as in (6):

H(A, t) = det((1—1t)(C—AD) + t(A—AB))
= det(A(t) - AB(t)),

where A(t)=(1-t)C+tA and B(t)=(1-t)D+tB.

Let X (t), A(t), ... , Ay(t) be n eigencurves of H(),t), where
2(0) £2;(0) £,..,, € A, (0) are the eigenvalues of matrix pencil (C,D). We conquer
(C,D) to (A,B) with Laguerre iteration [12], i.e., use the eigenvalues of (C,D)
as starting points of Laguerre iterations to compute all eigenvalues of (A,B).

(a) Some knowledge of the Laguerre iteration.

Let f(A) be a function having n real zeros A < A, <, ..., < A, and z; lie

between ); and "i+1’ then Laguerre iteration gives the two sequences

nf(zyp) .
Fzm) £ /(0= DF (2))? - nln = 1) f(2em)f " (2)

m+1=Im—

™

One of which converges to A;, another to '\i+l monotonicly. In the neighborhood of
a simple zero at A (7) converges cubicly to A On the other hand, in the

neighborhood of a zero A; of multiplicity r,

nf| (’m)
7' (am) + si9n(F eV X F o)) — nf e (o)

m+1=Tm —

also converges to ); cubicly.
(b) Computing f(A) , f'(A) and f”(1).
Let f()) = det(A—-AB), then all the zeros of f()\) are real. Since

ap =X By-Am

Ba=Ary  ay=26; B3- Ay

Bn-1-A1n_1 on_1-Mn_y Bp—ry

Bn—=Mn  an—A,

\ /
we have the following three term recursion.
Po(A) =1
P1(A) = (oy — Ay)
Pm(A) = (e = Ap)Pm — 1) =(Bm - '\'Ym)’l’m —a()s m=2, ..., n
£(2) = pp(R)-
By simple computation, we have following:
po(2) = 0
) = -4
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P‘n(’\) = (am - A6m)l"n - 1(’\) - 6um - 1(A)
= (B = A1) P — 2(0) + 2B = A7m)YmPm — 2(A)
m=23,..,n

') =ph)

and
p(')'(,\) =0
Pi(3) =0

Pi(Y) = (am = Xm)Pi = 1(A) = (B = M) P — 2(0) = 2Pl — 1 (A)
+ 4B = M) TmPm — 1)) = 27imPm — 2(A)
m=23..,n

1) = P0)

By computing ppy,(A),m=0,1,2,..,n, we know exactly how many eigenvalues of (A,B)
are less than A. Since z,, converges monotonicly, after one Laguerre iteration,
we know exactly z,, converges to which eigenvalue of (A,B) without any extra
computations.

(c) The overflow and the underflow control.

Since f(A) = det(A—AB), f()\) could be very small or large. Since f(A) can be
written as

10 =] _ A=),
FO=Tio, My m0-x)
and

") = Lo, 2,-1 4k %A%

We can see that we can find 8 such that f(A) = a10® , f(A) = 710® and f'(}) =
610’, vhere a, 7 and § have magnitude between the machine minimum and maximum
numbers. Hence, when we compute p,()), pj,(2) and pp(A), if p,(A) is too large (or
too small), then we multiply p,,(A), p,,,(x) and p! (A) by 10° for some integer B so
that pm(A)IOp is not too large (or too small). In this way, we can avoid overflow
as well as underflow. Finally, we will get P, '5:.()) and 'iz'::(,\) and all of them
have magnitude between machine minimum and maximum numbers and f())
=10%p ", ,f'(\) =10° 'i)':‘ and f"”(}) = 10° 'ii::, for some integer s. Since

nf(zm)
F(zm) £ /(0 = DF (2m) = n(n = DS (2pm)f " (21m)

Im4+1=%m —

np n("'-'m)
B n(em) £V~ 1P ()’ —nln— 1)F (2l )

overflow and underflow can be avoided.

=z

Now we give details of computing eigenvalues of (A,B).

Step 1. If i#1, go to step 2. Use A (0) as a starting point to do Laguerre
iteration to locate p;, the smallest eigenvalue of (A,B). By computing f((0)),
we know exactly if {z,}, the sequence generated by Laguerre iterations, will
converge to p,. If it does not, then use 2,(0)-a as a starting point, vhere a =
2|ﬂk+1/7k+1' if v, #0 and a = 2|8, | if Vg4 =0- If 2,(0) < py, {2} will
converge to pu.

Step 2. If A(0) is not a simple eigenvalue of (C,D), then go to step 3. If
[A(0)—p; _,| >¢, where ¢ = tolerance* -ax{l,\,,(o)l,|4\l(0)|} use )(0) as a starting
point. Then, {z,} will either converge to u; or u; ., since the starting point

is either in the neighborhood of u; or Bi 41 according to the propositions 2.2 and
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2.4 in section 2. If it converges to p;, then set i=i+1, go to step 5. If it
converges to u; ., then use (;ti+]+p’-_l)/2 as a starting point to do Laguerre
iteration and the new sequence {z,,} will converge to #;- Set i=i + 2, go to step
5.

Step 3. If the multiplicity r of A,(0) is equal to 2, go to step 4. by the
propositions in last section, X\(0) is an eigenvalue of (4,B). The generalized
Sturm sequences at A(0)te¢ are computed on (A,B) to check the multiplicity of

A;(0). We may have following cases according to the proposition 2.3.

(a). "i=“|’+1="'="i+r—1=’\i(o)’ Then set i=i+r, go to step 5.

(b). "‘i+1="i+2="'=“‘i+r—l=‘\i(0)‘ Then use (A(0)+p;_,)/2 as a starting
point to do Laguerre iterations and {z,,} will converge to p;. Then set i=i+r, go
to step 5.

(€)e  Bi=B;i41=-=Bipp_,=2(0). Then use (X(0)+X; 4 (0))/2 as a starting
point and {z,,} will converge to Pitr—1- Then set i=i+r, go to step 5.

(d). "i+1="i+2="'=”i+r—2='\i(o)’ Then use (p;,,+p;_,)/2 as a starting

point to do Laguerre iterations and {z,} will converge to ;. Then use
(Ai(0)+A‘-+'(0))/2 as a starting point and {z,;} will converge to Bitr—1- Then set
i=i+r, go to step 5.

Step 4. The generalized Sturm sequence at A(0) +¢ are computed on (4,B) to
check if X;0) is an eigenvalue of (4,B). If it is not a eigenvalue of (A4,B),
then Two sequences {z,,} and {zj;,} will be generated by Laguerre iterations with
,\'{o) as a starting point. One of them converges to u; and another to Bita- Then
set i=i+2, go to step 5.

If 2(0) is an eigenvalue of (A,B), then we may have following cases according
to the proposition 2.2.

(a). I-‘.‘=I‘.'+1='\,'(0)-

Then set i=i+2, go to step 5.

(b).  p;y,=X00).

Then use ("i+1+“i—1)/2 as a starting point to do Laguerre iterations. {z,},
generated by Laguerre iteration, will converge to p;- Then set i=i+2, go to step
5.

(c).  p;=2/0) and p;,, # A(0).

Use (A.-+2(0)+pi)/2 as a starting point to do Laguerre iterations. {zpn}>
generated by Laguerre iteration, will converge to Pigqe Then set i=i+2, go to
step 5.

Step 5. If i>n, go to (vi). Otherwise, go to step 2.

(vi) Compute eigenvectors.

If the eigenvectors are required, compute them by inverse iteration.

4. NUMERICAL RESULTS

In this section, we present our numerical results. Our homotopy algorithm is
in its preliminary stage, and much development and testing are necessary. But
the numerical results on the examples we have looked at seem remarkable.

EXPERIMENT 1. We implemented our algorithm on 50 pencils (A,B) on each
different dimension, where A is symmetric tridiagonal random matrix with both
diagonal and off-diagonal elements being uniformly distributed random numbers
between 0 and 1. B is a symmetric tridiagonal matrix with off-diagon;.l elements,
7;» being uniformly distributed random numbers between 0 and 1, and its diagonal

elements §; = 2maz(y;; +1)-
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The computations were done on a Sun SPARC station 1.

Table 1 shows the results of our algorithm HRST and the algorithm RSG in
EISPACK [4]. The algorithm RSG first reduces Az =Bz to Ay=)y, then solves it.
Since A is a full matrix, the RSG is unattractive for this problem as we

mentioned in section 1. But the RSG is the only algorithm available for this

problem in EISPACK.

Execution Time Execution Time max; || Az; = A;Bz; || 3/ Az max; 1(XTx - I)i,j |
Order all eigenvalues all eigenpairs
N RGS| HRST RGS| HRST RGS HRST RGS HRST
60 4.25 1.9 ) 6.9 2.1 3.16D-14| 8.32D-15 1.19D-14 | 4.91D-14
121 35.4 5.8 69.6 7.1 3.56D-14| 1.75D-14 1.42D-14 | 1.63D-14
180 95.4 | 108 185.6 | 13.4 5.41D-14| 2.83D-15 1.84D-14 | 8.02D-14
241 2874 | 18.7 429.4 | 224 5.57D-14] 7.10D-14 2.66D-14 | 5.73D-14

Table 1:Average execution time (second) of computed eigenvalues and eigenvectors.

Matrix | Order Execution Time(sec.) Ratio ( E:b: 1 (@(®) = AN/ Amaz
Type N HRST DSTEBZ (DSTEBZ)/HRST) HRST DSTEBZ

85 0.76 2.42 3.18 - 1.2219D-15 | -5.3290D-15

{1,2,1} 125 2.81 8.57 3.05 3.2201D-15 1.0658D-14

255 11.35 34.78 3.06 - 8.6600D-15 | - 2.1316D-14

499 42.50 130.21 3.06 3.8858D-15 | 7.9936D-15

65 0.73 1.52 2.08 -2.6906D-14 | 1.1368D-13

Wilkinsog 125 1.92 5.12 2.67 -7.2474D-15 | 5.6843D-14

255 6.70 19.34 2.89 6.6745D-16 | 2.8421D-14

499 21.68 72.45 3.34 -2.2760D-16 | 2.5871D-15

Table 2: The results of comparison of HRST with DSTEBZ.

EXPERIMENT 2. (a) A is the Toeplitz matrix [1, 2, 1], i.e., all diagonal
elements, a(i), are 2 and off-diagonal elements are 1. B = I.
(b) A is the Wilkinson matrix, i.e., the matrix [1, a(i), 1], where a(i) =

abs((n+1)/2 —i) , i=1,2,..,n with n odd. B=I.

Table 2 shows the computational results comparing our algorithm HRST with the
bisection algorithm DSTEBZ in LAPACK [1] on these two problems. It appears that

our algorithm leads in speed by a considerable margin in comparison with the

DSTEBZ.
EXPERIMENT 3. Matrices A and B are obtained from piece wise linear finite

element [11] discretization of the Sturm-Liouvill problem
-4 (p@)3H +e@u =,

where u=u(z), 0 < z<x and »(0) = v(x)=0 and p(z) > 0. Here, both A and B are

symmetric tridiagonal and positive definite. We use p(z) = 1 and q(z) =6.
The computations were executed on BUTTERFLY GP 1000, a shared memory

multiprocessor machine.
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The speed-up is defined as

_execution time using one processor
P~ execution time using p processors

S

and the effictency is the ratio of the speed-up cover p.

Order n =500 n = 1000

Nodes 1 | 4 8 |16 32 [1 [ 4 [ 8 16 | 32 [ 64
ExeTime 368.4 | 96.64 |53.48 [30.99 [18.75 [1584.] 407.9] 217.7 [120.7] 70.76] 45.78

Sp 1.0 | 381689 |11.9[19.7]1.0] 3.88] 7.28 | 131 | 22.4] 346

Splp 1.0 | 0.95]0.86 074 [0.61]1.0[ 0.97] 0.91 [0.82] 0.70| 0.54

Table 3: Execution time(second), speed-up and efficiency of the algorithm HRST.

Table 3 shows the execution time and the speed-up Sp as well as the
efficiency Sp/p of our algorithm. It appears that our algorithm is very
efficient. The natural parallelism of our algorithm makes it an excellent

candidate for multiprocessor machines.
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