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ABSTRACT. In this paper, a fully parallel method for finding all eigenvalues of

a real matrix pencil (A, B) is given, where A and B are real symmetric

tridiagonal and B is positive definite. The method is based on the homotopy

continuation coupled with the strategy Divide-Conquer and Laguerre iterations.

The numerical results obtained from implementation of this method on both single

and multiprocessor computers are presented. It appears that our method is

strongly competitive with other methods. The natural parallelism of our

algorithm makes it an excellent candidate for a variety of advanced

architectures.

KEY NORDS AND PHRASES. Eigenvalues, Eigenvalue curves, Multiprocessors, Homotopy

method.

1992 AMS SUBJECT CLASSIFICATION CODE. 65F15.

1. INTRODUCTION.

Nhen B is a well-conditioned positive definite matrix, real symmetric

generalized eigenvalue problem

can be reduced to the form

L- 1AL- T(LTz) A(LTz)
(2)

where A and B are real n xn symmetric matrices and B= LLT. There are many very

efficient algorithms for (2), for instant, the QR algorithm [8], the D&C

algorithm [3], the bisection algorithm [5] and the homotopy algorithm [6]. Nhen

A and B are both tridiagonal the above technique is unattractive because

L-IAL-T is, in general, a full matrix.

In this paper, we shall present a parallel homotopy method for finding all

the eigenvalues or all eigenpairs of a matrix pencil (A,B), where A and B are

both real symmetric tridiagonal and B is positive definite. Assume in (1),

l and B

(3)



742 K. LI

If fli= 7i= 0 for some i, then (I) can clearly be decomposed into two

subproblems and we can solve them independently. Hence, we will assume all fli and

are not both equal to zero

Let

C
0 A

where

A A2

where

B

D=( BIO 0)B

k + 7k +

7k + k + 7k + 3

7n Sn 7

Consider the homotopy H:Rx[0 1] R, defined by

()

H(A,t) det((1 t)(C- AD) + t(A
det(A(t)- AB(t)),

where A(t) (l-t)C+tA and B(t) (l-t)D+tB. The pencil (C,D) is called an initial
pencil.

In section 2, we shall show that the solution set of ll(A,t)=O in (6) consists

of continuously differentiable curves A(t), each joins an eigenvalue of (C,D) to

one of (A,B). lie call each of these curves a h0m0t0py cure or an eigencurve, lle

shall also show that each eigenvalue curve is monotonic in t. And if m, the

multiplicity of an eigencurve A(t) is greater than one in any subinterval of

[0,1], then it must be a constant curve. In the consequence, it is an eigenvalue

of (A,B) of multiplicity of m or m+l. lie shall give the details of our

algorithm in section 3 and some numerical results will be presented in section 4.

2. PRELIMINARY ANALYSIS

Proposition 2.1. Let H ( ), t) be de/reed as in (6), then the solar,on set o/H(A, t) 0 consasts

of real, confinxotsly differentiable eifencwres.
PROOF. First of all we show that A(t), a solution of H(A(t), t) 0 is real

for any in [0,1]. Since U(A(t),t) det(A(t)-A(t)B(t)), we only need to show that

B(t) is positive definite for all in 0,1]. Let A(t) be the smallest eigenvalue
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of B(t), then by Cauchy’s interlace theorem [8], AI(O > Al(t) for all in (0,1].
By Proposition 2.1 in [6], Al(t is strictly monotonic in t. Therefore, Al(t) is

strictly monotone decreasing in t. ilence A(t) > A(1) > 0 for all in [0,1)
since B(1) B is positive definite, llence B(t) is positive definite for all in

[0,3.
Now we show that A(t) is continuously differentiable. Clearly, H(A,t) can be

written as:

H(l(t),t)=Cn(t)An(t)+Cn_(t)An-(t) + + cl(t)A(t)+Co(t),

where ci(t)’s are polynomials in t. Let A(t) be a solution of H(A(t),t) 0 and o

any point in (0,1). By Puiseux’s theorem [10],

A(to+ A(to)+bth + b2h +

converges for sufficiently small . Let bm denote the first nonzero coefficient,
then

bin= lira (to + )- (to)

is real since A(t0+e), A(t0) and are all real. On the other hand,

m (t0 + t) (t0)(-1) bin=lira0- (_)

is also real. Hence, (-1)X is a real number. Therefore, m must be a multiple
of h. We can continue the same argument to show that only integral powers of
can have nonzero coefficients. Therefore, A(t0+e Ei=0 biei" Hence, A(t) is

continuously differentiable. Q.E.D.

PROPOSITION 2.2. An eigencurve A(t) of (Aft), B(t) ) is either straight hne or strtctlll monotonic

PROOF: Since

A(t) ,B(t)

A1

A- A(t)B2

where a flk+ -(t)Tk+’ there exist polynomials I(X) and ]2(X) such that

H(X,t)=.f()-t2.f2()). If there exists a 0 such that ]2(0) O, then H()t0,t)=0
i,plies f()) O. Hence H(0,t 0 for all in [0,1]. Therefore, (t) 0 for

all in [0,1], i.e., A(t) is a straight line.

If for any A, f2(A) 0, then U(0,t)=0 has at most one solution in [0,1].
Therefore, A(t) must be strictly monotonic in t. Otherwise, for certain 0,
U(0, t)=0 ill have more than one solution in [0,1] (See Figure 1).

O.E.D.
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Figure

Let m(A(t)) denote the multiplicity of A(t). Proposition 2.2 implies that if

m(A(t)) and there are and 2 in [0,I] such that A(tl) A(t2) where tl#t2,
then A(t) must be constant.

PROPOSITION 2.3. Let A(t) be an egenc,rve. If fa, b] ,s a s,&nterval of [O,l] and m(A(t)) m > 1,

for anyl ,n [a,b], then Aft) (0) and A(O) ,s an e,fenvahte of matrix pencil (A, B) of mult,phc,t./ of m or m

4.1.

PROOF. Claim 1: (t)_--0 for so,e constant 0, for in

Let tl, t2, ,tn be n distinct points in a,b]. Since rank

(A(t)-A(t)B(t))=n-m<n-1 for any in a,b] and A(t)-A(t)B(t) is symmetric

tridiagonal, at least one of the off-diagonal elements of A(t) -(Z)B(t), say

s-A(t)Vs, is equal to zero at two points, say and tj. Otherwise, rank

(A(t)- A(t)B(t)) _> n- 1. Hence, s- A(ti)Ts 0 and /a- A(ti)Vs O. Since s and 7s are

not both equal to zero, (ti)= A(tj). Hence, (t) A0 for some constant A0, for any

in [a,b] by Proposition 2.2.

Claim 2: rank(A(t)-AoB(t))=n-rn for all in (0,1] except at possible one point

in (0,1] rank(A(t)-oB(t))= n-m- 1.

If /k+l-0?k+l=O, then clearly, rank(A(t)-AoB(t))=n-m for all,t in (0,1].
If ]k+t-A07k+t #0’ since some off diagonal elements of A(t)-AoB(t are equal to

zero, A(t)-AoB(t can be rewritten as:

.43 oBs

where A2(t)-AoB2(t is unreduced symmetric tridiagonal, i.e., all its off-diagonal

elements are not equal to zero.

Hence,

rank(Aft) AoB(t) ) rank(A AoB1) 4- rank(a2(t) AoB (t)).
4- rank(As AoBs)

Clearly, rank(A -AoBI) +rank(As-AoB3) is constant. Assume ranA2(t)-AoB2(t))=mo
for some integer m0 for all in a,b]. Since (A2(t)-AoB(t)) is a unreduced
symmetric tridiagonal matrix, its eigencurves are smooth, disjoint and monotonic

in by Proposition 2.1. in 6]. Therefore, if p(t) is an eigencurve of
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(A2{t)-AoB:(t)), i.e., det((A2(t)-AoB2(t)) -p(t)) O, then either (t) --0 or there is

at most one such that p(t) O. Hence, if zero is an eigenvalue of

-AoB2(t)) for some in In,hi, then p(t) 0 is an eigenvalue for any in [0,1]

since ranl(A2(t)-AoB2(t))=mo for all in In,hi. Therefore, ranl(A2(t)-AoB2(t))=mo
for all in (0,1]. If for any in (0,1], zero is not an eigenvalue of

(A(t)-AoB(t)) then rank(A2(t)-AoB2{t)) mo. Hence, ral(A2(t)-AoB2(t))=n-m for

all in (0,1] in these two cases. If for any in [a,b], zero is not an

eigenvalue of(A2(t)-AoB2(t)), then clearly, there is at most one in (0,1] such

that rank(A(t) AoB2(t)) m0- 1.

Hence, A(t) is constant for all in [0,1] and A(O) is an eigenvalue of (A,B)

of multiplicity of m or m+l.

2,

Q.E.D.

From Proposition 2.3, we will not have any those bifurcation curves in Figure

If A(t) is not constant, then its multiplicity must be 1.

Let Al(i), A2(t), An{t be n eigencurves of (A{t),B(t)), where AI(O)_ A(O)
<_ _< x.(o).

Figure 2

PROPOSITION 2.4. Let Ai(t) and A + (t) be two nonconstant eifenc,rees o/ (Aft), B(t)).

< Ai + (o)/or some o in (0,I], then Ai(t) < A + l(t) for .ll in (0,1].

POF. From Prosition 2.2 and 2.3, th Ai(f) and Ai+(t) must be strictly

monotonic in t. Assume Ai(t)and Ai+(t)are both strictly monotone increasing. If

there exists a in (0,1] such that Ai(tl) and Ai+I(tl), then Ai(tl) and Ai+I(O) since

Ai+](t) is strictly monotonic in t. Therefore, t > 0 is a solution of

H(Ai+(O),t)=O (See Figure 3). By Prosition 2.2, Ai+(t) is" a constant.

Contradiction.

t=O t2 I

Figure 3

Similarly, if Ai(t) and Ai+(t) are both strictly monotone decreasing, then the

conclusion holds.
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Assume Ai(t is monotone increasing and Ai+l(t) monotone decreasing, then
Ai(0)<Ai/I(0). If there is a l>0 such that Ai(tl) and Ai+(t) then there exists a

> t such that Ai+l(t)<Ai(t2)<Ai+l(O). Since i+(t) is continuous and
Ai+(t)<Ai+ l(t)<Ai+l(0 for any in (0, tl), there is a 3 in (0, tl) such that
i+(t3)=A(t2) (See Figure 4), then H(Ai(t2),t)= 0 has two solutions. Therefore,
either Ai(t) or Ai+l(t) must be constant. Contradiction.

Clearly, if Ai+(t) is increasing and Ai(t) decreasing, then the conclusion
holds since Ai(O) < A + (0). Q.E.D.

Figure 4
From Proposition 2.4, if Ai(t) and Ai+(t) are both constants or both are not

constants, then they must be disjoint. However, if one of them is constant, they
may cross.

Example I.

Let

A= 4 B= 1 3 0
041 003

A(t)= 1 1 4t B(t)= 130
04t 1 003

then (A(t),B(t)) has three eigencurves:

.20 V/4 + 84482
66

X2(t .20 + V4 + 8448t
66

and

From these propositions, we know that all eigenvalues of the initial pencil not
only close to the eigenvalues of pencil (A,B), but also separate them. These
results provide us very important information in designing our code.
(See Figure 5).
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Figure 5

3. ALGORITHM

Our algorithm is based on following steps.

(i) Form initial matrix pencil.

For a given matrix pencils (A,B), let k=[n/2], then form an initial matrix

pencil as in (4) and (5) in Section 1. If k is greater than 2, repeat above

procedure on those submatrices, until the dimension of each submatrices is less

than or equal to 2. Now, .(C,D) is the initial matrix pencil, where C drag(As, l,

As, z, As, p) and D diag(Bs, l, Bs, Bs, p), p for some positive integer s. We
have & tree (See Figure 6).

(AsI, Bd (As2 Bs2
Figure 6

(ii) Compute all eigenvalues of (C,D).
Compute the eigenvalues of each submatrix pencil (As, i, Bs, i) i=1, 2, p.

Since Asi and Bsi are at most 2x2 matrices, the eigenvalues of pencil (Asi, Bsi can
be easily obtained.

(iii) Conquer.

After all the eigenvalues of each submatrix pencil (Asi, Bsi) 1,2, p are

available, we then compute all the eigenvalues of each submatrix pencil (Asi
Bsi), i= 1,2 ,p/2 by simple step homotopy method with Laguerre iterations.

It is sufficient to assume that all the eigenvalues of matrix pencils (All

Bll and (AI, BI are available and we want to compute all eigenvalues of matrix

pencil (A,B).
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Let

Construct a homotopy as in (6):

H(A, t) det((1-t)(C-AD) + t(A-AB))

det(A(t)- AB(t)),

where A(I)=(1-t)C+tA and B(t)=(1-t)D+tB.
Let Al(t), A2(t An(t be n eigencurves of H(A,t), where

Al(0 )_A2(0)_

_
An(0 are the eigenvalues of matrix pencil (C,D). We conquer

(C,D) to (A,B) with Laguerre iteration 12], i.e., use the cigenvales of (C,D)
as starting points of Laguerre iterations to compute all eigenvalues of (A,B).

(a) Some knowledge of the Laguerre iteration.

Let f(A) be a function having n real zeros A < A < < An and z0 lie

between A and Ai+t, then Laguerre iteration gives the two sequences

zm + Zm
()

One of which converges to Ai, another to Ai+ monotonicly. In the neighborhood of

a simple zero at Ai, (7) converges cubicly to Ai. On the other hand, in the

neighborhood of a zero A of multiplicity r,

Zm+ zm
nf(Zm)

I’(m) + "i-(l’(m))/(" ")((l,(m))2 "I(m)I"(m))

also converges to A cubicly.

(b) Computing /(A) if(A) and

Let .f(A) det{A-AB}, then all the zeros of /(A) are real. Since

A-AB

we have the following three term recursion.

p0()
p(A) (ch .)
Pro(A) (am- A6m)Pm- 1(A) (/m- ATm)Pm (A), m 2,

I() p.().
By simple computation, we have folloinE:

() 0

pi() -
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and

p’() o
p’() o
;() ( )_()( Tm) Pm- ()-2mP- 1()

+ 4(m- A?rn)’YrnP- ()- 2?Pm- ()
m 2, 3,..., n

f’() ()
By computing pm(A),m=O, 1,2 n, we know exactly how many eigenvalues of (A,B)

are less than A. Since zm converges monotonicly, after one Laguerre iteration,

we know exactly Zrn converges to which eigenvalue of (A,B) without any extra

computations.

(c) The overflow and the underflow control.

Since ](A) det(A-AB), f(A) could be very small or large. Since f(A) can be

written as

() ni oi(- ),
l’(,x E j n # j(- i)

and
n n n

ai(A- i)I"(X) Et= Ej= hi#j, t

Ve can see that we can find # such that I(A) o100 I’(A) 7100 and f’(A)
6100 where , 7 and 6 have magnitude between the machine minimum and maximum

numbers. Hence, when we compute pm(A), p(A) and p(A), if pm(A) is too large (or
too small), then we multiply pro(A), p(A) and p(A) by 100 for some integer so

that pm(A)100 is not too large (or too small). In this way, we can avoid overflow

as well as underflow. Finally, we will get n, n(A) and n(A) and all of them

have magnitude between machine minimum and maximum numbers and /(A)
=lO*p" n ,I’(A)= 10" n and if(A) I0s n, for some integer s. Since

Zrn + Zrn
n.f(zm)

f’(Zm) /(n-- 1)S(f’(Zm))s- n(n- l).f(Zm)f"(Zm)- .()-’P n(Zm) + 1)2( n(Zm)) -n(n-1)’ (Zm)’’/(::m)
overflow and underflow can be avoided.

Now we give details of computing eigenvalues of (A,B).

Step 1. If i 1, go to step 2. Use 1(0) as a starting point to do Lguerre

iteration to locate p, the smallest eigenvalue of (A,B). By computing f(A;(O)),

we know exactly if {Zrn}, the sequence generated by Laguerre iterations, will

converge to Pl" If it does not, then use At(O)-a as a starting point, where a

2ik+x/Tk+x if 7k+lO and a 2iD&+I if 7k+t=O. If AI(O < /l {Zm} will

converge to

Step 2. If Ai(O) is not a simple eigenvalue of (C,D), then go to step 3. If

IAi(O)-pi_ >, where tolerance* max{IAn(O) l,lAl(O)l }, use Ai(O) as a starting

point. Then, {Zrn} will either converge to Pi or Pi+I’ since the starting point

according to the propositions 2.2 andis either in the neighborhood of Pi or Pi+l
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2.4 in section 2. If it converges to Pi’ then set i=i+1, go to step 5. If it

converges to Pi+l’ then use (i+l +i-l)/2 as a starting point to do Laguerre

iteration and the new sequence {zm} will converge to i" Set i=i + 2, go to step

5.

Step 3. If the multiplicity r of i(0) is equal to 2, go to step 4. by the

propositions in last section, Ai(O) is an eigenvalue of (A,B). The generalized

Sturm sequences at i(O)+/- are computed on (A,B) to check the multiplicity of

Ai(O). t/e may have following cases according to the proposition 2.3.

(a). i =i+ ..... Pi+r-1 =i(0)" Then set i=i+r, go to step 5.

(b). ’i+1=i+2 ..... i+r-=Ai(O)" Then use (Ai(O)+i_)/2 as a starting

point to do Laguerre iterations and {Zm} will converge to i" Then set i--i+r go

to step 5.

(c). #i=Pi+= .... #i+r_2=i(O). Then use (i(O)+i+r(O))[2 as a starting

point and {Zm} will converge to #i+r-t" Then set i=i+r, go to step IS.

(d). #i+=#i+2 ..... Pi+r-2=Ai(0)" Then use (pi++#i_)[2 a a starting

point to do Laguerre iterations and {Zrn} will converge to #i" Then use

(i(O)+i+r(O))[2 as a starting point and {trn} will converge to #i+r-l" Then set

i=i+r, go to step 5.

Step 4. The generalized Sturm sequence at i(0) e are computed on (A,B) to

check if i(0) is an eigenvalue of (A,B). If it is not a eigenvalue of (A,B),
then Two sequences {:rn} and {z} will be generated by Laguerre iterations with

Ai(0) as a starting point. One of them converges to #i and another to Pi+I" Then

set i=i+2, go to step 5.

If i(0) is an eigenvalue of (A,B), then we amy have following cases according

to the proposition 2.2.

()" i i + i0)"
Then set i=i+2, go to step 5.

(b). /i + Ai(0)"
Then use (i+1+i_)[2 as a starting point to do Laguerre iterations. {era}

generated by Laguerre iteration, will converge to Pi" Then set i=i+2, go to step

5.

(c). #i Ai(O) and i+1 Ai(O)"
Use (Ai+2(O)+Pi)/2 as a starting point to do Laguerre iterations. {Zm)

generated by Laguerre iteration, will converge to Pi+" Then set i=i+2, go to

step 5.

Step 5. If i>n, go to (v/). Otherwise, go to step 2.

(v/) Compute eigenvectors.

If the eigenvectors are required, compute them by inverse iteration.

4. NUIIERICAL RESULTS

In this section, we present our numerical results. Our homotopy algorithm is

in its preliminary stage, and much development and testing are necessary. But
the numerical results on the examples we have looked at seem remarkable.

EXPERIIIENT 1. I/e implemented our algorithm on 50 pencils (A,B) on each
different dimension, where A is symmetric tridiagonal random matrix with both
diagonal and off-diagonal elements being uniformly distributed random numbers
between 0 and 1. B is a symmetric tridiagonal matrix with off-diagonal elements,
7i, being uniformly distributed random numbers between 0 and 1, and its diagonal
elements 6i 2rnaz(Ti, Ti + 1)"
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The computations were done on a Sun SPARC station 1.

Table shows the results of our algorithm HILST and the algorithm ILS6 in

EISPACK [4]. The algorithm RSG first reduces Az=ABz to y=Ay, then solves it.

Since is a full matrix, the RSG is unattractive for this problem as we

mentioned in section 1. But the RSG is the only algorithm available for this

problem in EISPACK.

Execution Time

Order all eigenvalues

N RGS HRST

o .25 i9
121 35.4 5.8

180 95.4 10.8

241 287.4 18.7

Execution Time

all eigenpairs

Rs HRST

6.9 2.1

69.6 7.1

185.6 13.4

429.4 22.4

maxi, j (xTX l)i, j

RGS ’RST RGS’ HRST

3.16D-14 8.32D-1"5 4.9iD-14
1.75D-14

2.83D-15

7.10D-14

3.56D-14

5.41D-14

5.57D-14

1.19D-14

1.42D-14

1.84D-14

2.66D-14

1.63D-14

8.02D-14

5.73D-14

Table l:Average execution time (second) of computed eigenvalues and eigenvectors.

Matrix Order Execution Time(sec.)
Type N HRST DSTEBZ

65 0.76

[,,:l 2 2.8

255 11.35

499 42.50

65 0.73

Wilkinso 125 1.92

255 6.70

499 21.68

2.42

8.57

34.78

130.21

1.52

5.12

19.34

72.45

Ratio

(DSTEBZ)/HRST)
3.18

3.05

3.06

3.06

2.08

2.67

2.89

3.34

able 2: The results of comparison of HRST with DSTEBZ.

E (,,(i)- (i)))/,o
HRST

3.2201D-15

8.6600D- 15

3.8858D-15

2.69061 14

7.2474D-15

6.6745D-16

-2.27601)-16

DSTEBZ

"513290D-i5
1.0658D-14

-2.1316D-14

7.993613-15

1.1368D-13
5.6843D-14

2.8421D-14

2.5871D-15

EXPERIMENT 2. (a) A is the Toeplitz matrix [1, 2, 1], i.e., all diagonal

elements, a(i), are 2 and off-diagonal elements are 1. B I.

(b) A is the Wilkinson matrix, i,e., the mtrix [1, a(i), 1], where a(i)

abs((n+l)/2 -i) i=1,2 n with n odd. B=I.

Table 2 shows the computational results comparing our algorithm HRST with the

bisection algorithm DSTEBZ in LAPACK [1] on these two problems. It appears that

our algorithm leads in speed by a considerable margin in comparison with the

DSTEBZ.

EXPERIMENT 3. Matrices A and B are obtained from piece wise linear finite

element [11] discretization of the Sturm-Liouvi11 problem

-d (p(x))+q(x)u--

where u=u(z), 0 < x<r and u(O) u’(x)=0 and p(x) > O. Here, both A and B are

symmetric tridiagonal and positive definite. We use p(z) and q(x)=6.

The computations were executed on BUTTERFLY GP 1000, a shared memory

multiprocessor machine.
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The speed-ap is defined as

execution time using one processorSp= execution time using p processors

and the effscaencl is the ratio of the speed-up cover p.

Order n 500

Node 4 8 16 32

ExeTime 368.4 96.64 53.48 30.99 18.75

Sp 1.0" 3.81 6.89 11.9 19.7

Sp/p_ 1.0 0.95 0.86 0.74 0.61

n I000

4’ 8 16 32 64

1584. 407.9 217.7 120.7 70.76 45.78

1.0’ 3.88 7.28 13.1 22.4 34.6

1.0 0.97 0.91 0.82 0.70 0.54

Table 3: Execution time(second), speed-up and efficiency of the algorithm HRST.

Table 3 shows the execution time and the speed-up Sp as well as the

efficiency Sp/p of our algorithm. It appears that our algorithm is very

efficient. The natural parallelism of our algorithm makes it an excellent

candidate for multiprocessor machines.
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