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ABSTRACT. In this paper we introduce the concept of a p-system in a local Noether lattice and

obtain several characterizations of these elements. We first obtain a topological characterization

and then a characterization in terms of the existence of a certain type of decreasing sequence of

elements. In addition, p-systems are characterized in quotient lattices and completions.
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In 1962 R. P. Dilworth [7] introduced the concept of a Noether lattice as an abstraction of

the lattice of ideals of a Noetherian ring. Many of his ideas have since been extended and have

proved to be extremely useful (e.g., [1], [5], [6], [12], and [13]). In this paper we introduce the idea

of a p-system in a local Noether lattice and obtain numerous characterizations of these elements.

We begin with a topological characterization of p-systems (Theorem 1) and then obtain a

characterization of p-systems in terms of the existence of a special type of decreasing sequence of

elements in the lattice (Theorem 2). Next p-systems are investigated in quotient lattices (Theorem
3) and completions (Theorem 4). When the local Noether lattice under consideration is the lattice

of ideals of a local Noetherian ring, a p-system is known as a principal system. The concept of a

principal system was introduced by Northcott and Rees [15] and was motivated by Macaulay’s
well-known theory of inverse ystems. As a consequence of our lattice results, we obtain several

characterizations of principal ystems in rings. Finally we end by giving an example of a local

Noether lattice which has a variety of p-systems and which is not the lattice of ideals of any

commutative ring.
In general we adopt the terminology of [2], [4], and [7]. Following [7], a local Noether lattice
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is a modular, principall generated multiplcative lattice which satisfies the ascending chain
condition, has a unique maxinal element, and has the property that the greatest element of is

a multiplicative identity, let ’ be a Ical Nether lattice with maximal element M. An element
Q of ’ i, primary if fir all elcment, A and B of , AB < Q implies A < Q or B <_ Q for some

integer k. The radical f an clement A f 9’, denoted by Rad(A). is defined by

Rad(A) V{X X’ < A for some integer s}. ()

Furthermore, an element O 1 ’ i,, ,aid to be M-primary if Rad(Q) M. (If Rad(Q) M, then

Q is primary [11. Corollary 2.5. page 101].) For an element A of o, we define A to be the set

{Q Q is a meet-irreducible M-primary element of such that A < Q}. Also define a metric

d (called the M-adic metric)n ff as follows:

d(C,D) ()if (’v M n D v Mn for all nonnegative integers

otherwise,

d(C,D) 2-’(’D) where s(C,D) sup{n C v Mn D v Mn}.

(2)

This metric gives rise to the M-adic completion of [8]. Finally an element A of is defined to

be a p-system in if A - and for every M-primary element Q" of ff with A _< Q’, there exists

a meet-irreducible M-primary element Q of such that A <_ Q s Q’. Note that all

meet-irreducible M-primary elements of are p-systems in ft.
We begin with the following characterizations of p-systems.
THEOREM 1. Let c be a local Noether lattice with maximal element M and let A be an

element of different from !. Then the following are equivalent:
(1.1) A is a p-system in c
(1.2) for every positive integer n, there exists a meet-irreducible M-primary element Q of such

that A <_ Q _< A v Mn

(1.3) A is a closure point of 9A in the M-adic topology on ft.
PROOF. To show that (1.1) implies (1.2), suppose A is a p-system in ff and n is a positive

integer. Since M _> Rad(A v Mn) _> Rad(Mn) M, it follows that A v Mn is an M-primary
element of ft. Thus, since A is a p-system in $8, there exists a meet-irreducible M-primary element

Q of ff such A _< Q _< A v M n. We now show that (1.2) implies (1.3). Suppose (1.2) holds and

e > 0. Let n be a positive integer such that 2-n < e. By (1.2), there exists a meet-irreducible

M-primary element Q of 8 such that A <_ Q _< A v Mn. It follows that A v Mn Q v Mn, and
so Q 9A and d(A,Q) < 2-n < . Hence, A is a closure point of 9A in the M-adic topology on

ft. To complete the proof, we show that (1.3) implies (1.1). Suppose A is a closure point of 9A
in the M-adic topology on ff and that Q" is an M-primary element of ff such that A _< Q’. Since

Q" is M-primary, choose n to be a positive integer such that Mn <_ Q’. So by (1.3), there exists
Q 9A such that d(A,Q) < 2-n. Hence, we have that Q is a meet-irreducible M-primary element

of ff such that A _< Q and A v Mn Q v Mn. Thus, it follows that

A < Q _< O v Mn A v Mn _< Q’. (4)

Hence, A is a p-system in . This completes the proof.
We now characterize principal systems in a local Noether lattice in terms of the existence

of a certain type of decreasing sequence of special elements in the lattice.

THEOREM 2. Let 8 be a local Noether lattice with maximal element M and let A be an

element of ff different from 1. Then A is a p-system in ff if and only if there exists a decreasing

(3)
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sequence {On} )1 nleet-irredtcible M-primary elements of such that

(i) A O and

(ii) if Q is an M-primary clc,cn f atisNing A z Q, then there is a positive integer n such

that On O.
PROOF. Asumc there i, decreasing equence {Qn} of elements of satisfying conditions

(i) and (ii) and uppse Q" i ,, M-primary element of such that A z Q’. From condition (ii),
we get that there exist pc nteger n uch that Qn Q’" Also by condition (i), we have that

A Qn" Thereflrc. O i a ,ncet-irretlucible M-prima element of such that A Qn Q’"

Hence, A is a p-ytem in ’. (nverely. assume A is a p-system in . We recursively define a

sequence {Qn} of element I a follow" Choose Q to be M. For n > 1, choose Qn to be a

meet-irreducible M-primary element of uch that

A <_ On
_< On-1 ^ (A v Mn). (5)

This is possible using (1.2) ,,ince A <_ Qn- ^ (A v Mn) and

Rad(Qn_ ^ (A v Mn)) Rad(Qn_l) A Rad(A v Mn) M (6)

so that Qn-l ^ (A v Mn) is an M-primary element of . By our construction, {Qn} is a decreasing
sequence of meet-irreducible M-primary elements of . Moreover,

A <_ O _< (A v Mn) A, (7)

SOn1Qn A. Finally, if Q ,, an M-primary element of such that A <_ Q, then there exists a

positive integer n such that M n _< Q, and it follows that Qn -< A v Mn < Q. This completes the

proof.
We now recall the definition of quotient lattice given in [7]. Let be a Noether lattice and

let D be an element of . Define /D to be the sublattice {X E D_< X}of. Then/Dis
a multiplicative lattice with multiplication o defined by

AoB ABv D. (8)

If is local with maximal element M and D <_ M, then f/D is local with maximal element M;
furthermore, for an element A of satisfying D <_ A, A is an M-primary element of if and only
if A is an M-primary element of /D.

THEOREM 3. Let be a local Noether lattice with maximal.element M and let A be an

element of different from I. Then the following are equivalent:
(3.1) A is a p-system in

(3.2) for all elements B of satisfying B < A, A is a p-system in /B
(3.3) the zero element of 8/A is a p-system in /A
(3.4) there exists an element B of satisfying B _< A such that A is a p-system in /B.

PROOF. To show that (3.4) implies (3.1), suppose there exists an element B of St such that

B _< A and A is a p-system in /B. In addition, suppose that n is a positive integer. Then using
(1.2), there exists a meet-irreducible M-primary element Q of /B such that A <_ Q <_ A v Mn.
Hence, we get that Q is a meet-irreducible M-primary element of such that A _< Q _< A v Mn.
Therefore, A is a p-system in 92. The proofs that (3.1) implies (3.2), that (3.2) implies (3.3), and

that (3.3) implies (3.4) are straightforward and we omit the details. This completes the proof.
For a local Noether lattice with maximal element M, we now investigate p-systems in the

completion of with respect t the M-adic metric described earlier. Following [8], let * denote

the set of all formal sums , A of elements of 8 such that
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A Ai+ v M

for all positive integers i. On ’. define, A, <_ ,: B if and only if A <_ B for all

and

(9)

(10)

A C(A*) <_ C(O’) -< C(A* v (M*)n) A v Mn. (12)

Since M* Rad(O’), pick a positive integer r such that (M*) < Q’. Therefore, we have that
M C((M*)r) _< C(Q’) and since */(M*y is isomorphic to /Mr, we get that C(Q’) is a

meet-irreducible M-primary element of . Hence, by (1.2), A is a principal system in 5. This

completes the proof.
We now summarize the results of the previous theorems.
THEOREM 5. Let 5 be a local Noether lattice with maximal element M and let A be an

element of 5 different from 1. Then the following are equivalent:
(5.1) A is a p-system in

(5.2) for every positive integer n, there exists a meet-irreducible M-primary element Q of 5 such
that A <_ O <_ A v Mn

(5.3) A is a closure point of 0A in the M-adic topology on 5
(5.4) there exists a decreasing sequence {On} of meet-irreducible M-primary elements of 5 such

that

(i) A =On and
rl=l

(ii) if Q is an M-primary element of 5 satisfying A < Q, then there is a positive integer
n such that Qn <- Q

(5.5) for all elements B of satisfying B _< A, A is a p-system in 5/B
(5.6) the zero element of 8/A is a p-system in 5/A
(5.7) there exists an element B of 5 satisfying B < A such that A is a p-system in 5/B
(5.8) A* is a p-system in "

For an element A of , let A denote the element (A v Mi) of *. Then is a local Noether
lattice with maximal element M’ M. It can be seen that 5* is a collection of representatives

t=l

of equivalence classes of Cauchy sequences of 5 with the M-adic metric and in fact is the
completion of with this metric. If B is an element of 5* then C(,=) Bi) is the element B
of 5. For each positive integer . the map A A* from 5/M to 5*/(M*) and the map B C(B)
from */(M*) to 8/M are muitiplicative lattice isomorphisms. Additional properties can be found
in [8]-[ 10].

THEOREM 4. Let 8 be a local Noether lattice with maximal element M and let A be an
element of different from i. Then A is a p-system in 5 if and only if A* is a p-system in 5*.

PROOF. Suppose A i a principal system in 5 and n is a positive integer. Then by (1.2)
there exists a meet-irreducible M-primary element Q of 5 such that A < Q < A v Mn. Thus, it
follows that A* _< Q* < A* v (M*)n. Since M Rad(Q), pick a positive integer k such that
Mk <_ Q. Since 8/M k is isomorphic to */(M*)k, it follows that Q* is a meet-irreducible
M*-primary element of *. Thus, by (1.2), A* is an p-system in 5*.

Conversely, suppose A* is a p-system in 5* and n is a positive integer. Then by (1.2) there
exists a meet-irreducible M*-primary element Q" of 5* such that A* <_ Q" < A* v (M*)n. Thus,
it follows that
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We now turn our atte,tt,, to ring,,,, where in general we adopt the terminology of [14]. Let
R be a local Noetherian ring x,+ith maximal ideal M. Then (R), the lattice of ideals of R, is a
local Noether lattice. We say that an ideal A of R is irreducible if A is a meet-irreducible element
of (R). In addition, an ideal A >f R is a principal system in R if and only if A is a p-system in

,(R). Let R* denote the ring M-adic completion of R and let AR" denote the (ring) extension
of an ideal A of R to R. Thu,,. we obtain the following result.

THEOREM O. Let R be a local Noetherian ring with maximal ideal M and let A be a

proper ideal of R. Then the following are equivalent:
(6.1) A is a principal system i, R
(6.2) for every positive integer n, there exists an irreducible M-primary ideal Q of R such that

ACQCA + Mn

(6.3) A is a closure point of PA in the M-.adic topology on (R)
(6.4) there exists a decreasin sequence {On} of irreducible M-primary ideals of R such that

A .. Qn, and

(ii) if Q is an M-primary ideal of R satisfying A C Q, then there is a positive integer n

such that On (__ O
(6.5) for all ideals B of R satisfying B C__ A, A is a principal system in R/B
(6.6) the zero ideal of R/A is a principal system in R/A
(6.7) there exists an ideal B of R satisfying B C_ A such that A is a principal system in R/B
(6.8) AR" is a principal system in R’.

PROOF. The equivalences of (6.1)-(6.7) follows from (5.1)-(5.7) and the fact that Q is an

irreducible M-primary ideal of R if and only if Q is a meet-irreducible M-primary element of (R).
To show that (6.1) and (6.8) are equivalent, we have the following chain of equivalences:

A is a principal system in R
< A is a p-system in (R)
< A" is a p-system in (R)*
,, AR* is a p-system in (R*)

AR* is a principal system in R*.
The second equivalence follows from the equivalence of (5.1) and (5.8), whereas the third

equivalence follows from the fact that there exists an isomorphism q" (R)* if(R*) with the
property that q(A*) AR* (see [10, Theorem 3, p. 158] and its proof). This completes the proof.

E H
M2

E2 H2 " EH

O
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We conclude thi,, paper Iy giving an example of a local Noether lattice which is not the

lattice of deais of any c)mmutative ring and which has a variety of principal systems. Let be the

sublattice of RL [3] pictured above. It is easily ,een that all elements of except for and O are

M-primary elements f ’. In tlditin. the maximal element M as well as all elements of the form

Em (where m > 0) or EnH (where n _> ) are p-systems since these elements are also

meet-irreducible. However. the least element O is another p-system in since the sequence {En}
satisfies the condition,, of Therem 2 and O is the meet of the elements of this sequence. Finally,

since i, distributive and i,, I a chain, it follows [3, Theorem 3, p. 222] that is not the lattice

of ideals of any commutative ring.
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