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ABSTRACT. Suppose f:CX where C is a closed subset of X. Necessary and sufficient

conditions are given for f to have a fixed point. All results hold when X is complete metric

space. Several results hold in a much more general setting.
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1. INTRODUCTION.
Fixed point theorems for non-self maps are unusual. We surely require that C t3 f(C) is non-

empty, f(x)= x + for X in [0,1] is a linear isometry from the compact space [0,1] into the

compact space [0,2] but f is fixed point free. The mapping ]’(x)= x+ for x in [1,oo)is a

continuous mapping from [1,o)into [0,o). It is fixed point free but If(x)-f(Y)l < x-Yl
for x y.

TtIEOIM (Brouwer [1]). If E is a non-empty convex compact subset of E" and f:EE is

continuous, then f(x) x for some x in E.
2. RFULTS.

TttEOPM 1. Let C be a closed subset of a complete metric space X and suppose f maps

C onto X or f maps C into X with C C f(C). If for some k > 1, d(f(x), f(y)) >_ k d(x,y) for

every x, y in C, then f has a unique fixed point in C.
PROOF. Clearly, f is one-to-one. Let g f-1 restricted to C. Now g maps C into C.

For x,y in C, d(x,y) d(f(gx),f(gy)) > k d(g(x),g(y)) or d(g(x),g(y)) < d(x,y) and 0 < < 1. g

has a unique fixed point from Banach’s fixed point theorem. But f(Xo)= f(g(xo))= Xo. If

xl f(x), then g(x) g(f(x))= x and cl xo.

The above result suggests that one should consider non-self maps that satisfy C C f(C). It is

well known that a continuous function from an arc onto a containing arc must have a fixed point.

[0,1] or any homeomorphic image is called an arc. Thus Brouwer’s theorem extends to the case

C C f(C) for n 1. In [7], Sam Nadler showed that for n > 2 Brouwer’s theorem does not

extend. For n > 2, let A and B be closed balls in E" with A C B and A # B. He showed that

there exists f and g such that:

(a) f:AB where f is continuous, onto, f(i)A)= B, and f is fixed point free,

(b) g:A--,B where g is continuous, onto, g-(i)B) i)A, and g if fixed point free.
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THEOREM 2. Let C be a closed bounded, and convex subset of a uniformly convex Banach

space and suppose f maps C onto X or f maps C into X with C C f(C). If for every x,v in C

f(z)- f(y)[[ > z- y [[, then f has a fixed point in C.
PROOF. Clearly, f is one-to-one. Let g= f-1 restricted to C and observe that

g(z)- 9(V)[[ < z-y where g:C-,C. From Kirk’s theorem [6], g has a fixed point z0 in C.
Clearly, f(x0)= x0.

The following is an example of a mapping f that takes a closed, bounded, and convex subset

C of a Banach space X into X where C C f(C), f(z)- f(v)[[ x- for all z, V E C, and

has no fixed points.

EXAMPLE 1. Let X be the space of sequences which converge to zero with

[[x[[ =sup[z,[ forzinX. Let C={zEX:[[z[[ =l and z0=l}. Cisclosed, bounded, and

convex. Define f:CX by f(z) V where V, x,+ ,n 0,1,2,. f(x)- f(v)[[ z-

and f is linear. To see that C C f(C) consider the following. For z C, define r to be the

sequence where r0 and r, z,_,n 1,2,3,.- Then r C, and f(r)= z so C C f(C). If

s={1,0,0,-.-},sCbut f(s)={0,0,0,...}C. HenceC#f(C). Iff(x)=xforsomezin
C, then z,=x,,+a for n=0,1,2,.... Since z0=l,z,=l for all n and z6C. Therefore.
does not have a fixed point in C.

The following example shows that Banach’s fixed point theorem does not generalize to non-

self maps.

EXAMPLE 2. Let X=C(R,R) with [[f[[ -sup [f(t)[ for f X. Let
C= {f . X:f(t)=O for all t< 0 and l,imoof(t > 1}. C is a osed and convex subset of X.
Define T:CX by (Tf)(t)= 1/2 f(t + 1). To see that C C T(C) consider the following. For f in

C set g(t)=2f(t-1), g(t)=O for t_<0 since t-l<0 and f(t)=O for all t_<0.

L]Lnoog(t loo2 f(t- 1) _> 2. Thus g e C md (Tg)(t)= f(t). Hence C C T(C). Let f(t) be
1defined as 0 ift_<0, if0<t<l, and 1 ift_>l. Then fC. Now (Tf)(t)is 0 if t< -1,

(t+l) if -l<t<0, and 1/2 if t_>0. Therefore, TfC and C#T(C). For
f,g.C,[[Tf-Tg]] =1/2][/-g]]. If Tf=f for some fa._C, then f(t)=1/2 /(t+l) and it

follows that f(n) 0 for all integers n. Hence liLnoof(t 1 and f

_
C. Therefore T does not

have a fixed point in C. Note that T is linear, one-to-one, and T(C) is closed.
We now turn to finding necessary and sufficient conditions for a non-self map to have a fixed

point. Then it becomes clear that C C f(C) is a natural assumption.

Let (X,t) be a topological space and d:X x X[0,oo) such that d(x,y)= 0 if and only if

x =y. X is said to be d-complete if E d(z,,x, )< oo implies that the sequence {x,} is
n=l +

convergent in (X,t). These spaces include complete (quasi) metric spaces and d-complete
(symmetric) semi-metric spaces. I [2] d [3] eea bi metric space fixed point theorems

were extended to this setting, f:X--X is w-continuous at x if x.--.x as n--.oo implies

f(x.)-,f(x) as

The following definition was given by G. Jungck in [5].
DEFINITION 1. Two maps f and g re compatible if, for any sequence {x.) such that lira.

f(z.) lira. (x.) =, it follows that lira. d(f(az.) a(fx.))= 0. Commuting mps ae compatible
but the converse is false.

DEFINITION 2. Given a mp f, a map is compatible with f, if for any sequence

such that lira. f(z.) lira. g(z.) it follows that lira. f(e(x.))
REMAR 1. If f and g are w-continuous and (X,d) is a metric space, then, using definition
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2, f is compatible with g is equivalent to g is compatible with f. In this case, we say that f and

g are compatible.

PROOF. Assume f and g are w-continuous and that lim,f(x,)= lim.g(x,)= implies lira.
f(g(z,)) g(t). If we are in a metric space,

d(f(gx,), g(fx,)) < d(f(gx,), g(t)) + d(g(t), g(fx,))
and

d(g(fx,), f(t)) < d(g(fx,), f(gx,)) + d(f(gz,), f(t)).

It follows that f is compatible with g implies that g is compatible with f. Interchanging g and f
above gives the converse.

It also follows from the above argument that if f and g are w-continuous and (X,d) is a

metric space, then the two definitions of compatibility are equivalent.

REMARK 2. If (X,t) is a d-complete topological space, g is w-continuous, and f and g

commute, then g is compatible with f using definition 2. We use definition 2 for d-complete
topological spaces.

Theorem 3 and its corollaries are generalizations of theorems due to Hicks and Rhoades [4]
which are generalizations of theorems due to Jungck [5].

THEOREM 3. Let (X,t) be a Hansdorff d-complete topological space and suppose f:C-X
where f is w-continuous and C is a closed subset of X. Then f has a fixed point in C if and only
if there exists cr e (0,1) and a w-continuous function g:C---C such that g(C)C f(C),g is

compatible with f on f-1(C) and

(1) d(g(x),g(y)) < ad(f(x),f(y)) for all z,y C.
Indeed, if (1) holds, f and g have a unique common fixed point.

PROOF. If f(a)= a for some a C, set g(x)= a for every x C. If x f-1(C), f(x) C
and g(f(z)) a f(a) f(g(z)). If x C, g(x) a f(a) gives g(C) C f(C). Also,
0 d(a, a) d(g(x), g(y)) < crd(f(x), f(y)) for all x, y C.

Suppose there exists c, (0,1) and a w-continuous function g: C--C such that g(C) C f(C), g

is compatible with f on f-l(C) and d(g(x),g(y))<_ ad(f(x),f(y)) for all x,y C. Let x0 C.
g(xo) f(xl) for some xl C since g(C)C f(C). Construct a sequence {x,,} with {x.} C C and

f(x,) g(x,_l) for n 1,2,3,.- Since

d(f(x,), f(x, + 1)) d(g(x,_ 1),g(x,)) < d(f(x, 1), f(x,,)),

it follows that d(f(z,), f(z, + 1)) < a"- ld(f(zl), f(z)). Hence d(f(z,), f(z. + 1)) < oo. The

space is d-complete so there exists p X with lira. f(z,)= p. f(z,)= g(z._l)C gives
p cl(C)= C. Now f is w-continuous gives f(g(x._l))-f(p) as noo. Since g is compatible
with f on f-l(C) and p f-l(C) we get lira, f(g(x,))= g(p). The space is Hausdorff so

f(p) g(p) and p f-1(C). Consider the sequence y, p for all n. Then f(y.)f(p) as n--,oo,
g(y,)-g(p) as n-o, and compatibility give f(g(p))= f(g(y,))g(f(p)) as n--,oo. Thus,
f(g(p)) g(f(p)). Therefore, f(f(p)) f(g(p))= g(f(p))= g(g(p)) together with

d(g(p), g(gp)) < ad(f(p), f(gp)) cd(g(p), g(gp)) implies g(p) g(g(p)). Hence
g(p) g(g(p))= f(g(p)) and g(p)is a common fixed point of f and g.

If x f(z) g(z), then d(x, g(p)) d(g(z), g(gp)) < ad(f(z), f(gp)) ad(z, g(p)) gives

g(p).
COROLLARY 1. Let (X,t) be a Hausdorff d-complete topological space and C be a closed
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subset of X. Suppose f:C--X and g:C--C, where f and g are w-continuous, commute on

f-(C), and g(C) C f(C). If there exists a E(0,1) and a positive integer k such that

d(gk(z),gk(y)) < ad(f(x),f(y)) for all z,y E C, then f and g have a unique common fixed point.

PROOF. Clearly, gk commutes with f on f-1(C) and g*(C)C g(C)C f(C). Applying the

theorem to g* and f gives a unique p C such that p g(p) f(p). Since f and g commute on

f-(C) and p f-(C),g(p)= g(f(p))= f(g(p))= g(g(p)) or g(p) is a common fixed point of f
and gk. Uniqueness of the common fixed point of f and g* gives g(p)= p f(p). If

q g(q)= f(q) then g:(q)= f(q) and q p.

COROLLARY 2. Let n be a positive integer and let c > 1. Suppose C is a closed subset of

a Hausdorff d-complete topological space and f:C---,X with C C f(C). If d(f"(x),f"(y))
> ad(x,y) for all x,y in (f"- ’)- (C), then f has a fixed point in C.

PROOF. For n 1, this follows from corollary by letting g I. f" is one-to-one.

C C f(C)implies C C f"(C). Let h be the restriction of (f")-’ to C. h:CC and

d(h(z),h(y)) < d(z,y) for all x,y C. From corollary with k 1,h gk g and f I, there

exists a unique x0 such that h(xo)=xo. Hence f(xo)=f"+’(Xo)=f"(f(xo))or
h(f(xo)) (f")-’(f(xo)) f(xo). Uniqueness of the fixed point for h gives x0 f(xo). If f(y) y

then f"(y) y and y h(y). Again, uniqueness of the fixed point for h gives x0 y.
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