FIXED POINT THEOREMS FOR NON-SELF MAPS I

TROY L. HICKS and LINDA MARIE SALIGA

Department of Mathematics and Statistics University of Missouri-Rolla Rolla, MO 65401

(Received July 29, 1992)

ABSTRACT. Suppose $f: C \to X$ where C is a closed subset of X. Necessary and sufficient conditions are given for f to have a fixed point. All results hold when X is complete metric space. Several results hold in a much more general setting.

KEY WORDS AND PHRASES. Commuting, compatible, *d*-complete topological spaces, fixed points, non-self maps, pairs of mappings.

1991 AMS SUBJECT CLASSIFICATION CODE. 47H10, 54H25.

1. INTRODUCTION.

Fixed point theorems for non-self maps are unusual. We surely require that $C \cap f(C)$ is nonempty. f(x) = x + 1 for X in [0,1] is a linear isometry from the compact space [0,1] into the compact space [0,2] but f is fixed point free. The mapping $f(x) = x + \frac{1}{x}$ for x in $[1,\infty)$ is a continuous mapping from $[1,\infty)$ into $[0,\infty)$. It is fixed point free but |f(x) - f(y)| < |x-y|for $x \neq y$.

THEOREM (Brouwer [1]). If E is a non-empty convex compact subset of E^n and $f: E \to E$ is continuous, then f(x) = x for some x in E.

2. RESULTS.

THEOREM 1. Let C be a closed subset of a complete metric space X and suppose f maps C onto X or f maps C into X with $C \subset f(C)$. If for some k > 1, $d(f(x), f(y)) \ge k d(x, y)$ for every x, y in C, then f has a unique fixed point in C.

PROOF. Clearly, f is one-to-one. Let $g = f^{-1}$ restricted to C. Now g maps C into C. For x, y in C, $d(x, y) = d(f(gx), f(gy)) \ge k \ d(g(x), g(y))$ or $d(g(x), g(y)) \le \frac{1}{k} \ d(x, y)$ and $0 < \frac{1}{k} < 1$. g has a unique fixed point from Banach's fixed point theorem. But $f(x_0) = f(g(x_0)) = x_0$. If $x_1 = f(x_1)$, then $g(x_1) = g(f(x_1)) = x_1$ and $c_1 = x_0$.

The above result suggests that one should consider non-self maps that satisfy $C \subset f(C)$. It is well known that a continuous function from an arc onto a containing arc must have a fixed point. [0,1] or any homeomorphic image is called an arc. Thus Brouwer's theorem extends to the case $C \subset f(C)$ for n = 1. In [7], Sam Nadler showed that for $n \ge 2$ Brouwer's theorem does not extend. For $n \ge 2$, let A and B be closed balls in E^n with $A \subset B$ and $A \ne B$. He showed that there exists f and g such that:

(a) $f: A \rightarrow B$ where f is continuous, onto, $f(\partial A) = B$, and f is fixed point free,

(b) $g: A \rightarrow B$ where g is continuous, onto, $g^{-1}(\partial B) = \partial A$, and g if fixed point free.

THEOREM 2. Let C be a closed bounded, and convex subset of a uniformly convex Banach space and suppose f maps C onto X or f maps C into X with $C \subset f(C)$. If for every x, y in C $|| f(x) - f(y) || \ge || x - y ||$, then f has a fixed point in C.

PROOF. Clearly, f is one-to-one. Let $g = f^{-1}$ restricted to C and observe that $||g(x) - g(y)|| \le ||x - y||$ where $g: C \to C$. From Kirk's theorem [6], g has a fixed point x_0 in C. Clearly, $f(x_0) = x_0$.

The following is an example of a mapping f that takes a closed, bounded, and convex subset C of a Banach space X into X where $C \subset f(C)$, || f(x) - f(y) || = || x - y || for all $x, y \in C$, and f has no fixed points.

EXAMPLE 1. Let X be the space of sequences which converge to zero with $||x|| = \sup_{n} |x_n|$ for x in X. Let $C = \{x \in X : ||x|| = 1 \text{ and } x_0 = 1\}$. C is closed, bounded, and convex. Define $f: C \to X$ by f(x) = y where $y_n = x_{n+1}, n = 0, 1, 2, \cdots$. ||f(x) - f(y)|| = ||x - y|| and f is linear. To see that $C \subset f(C)$ consider the following. For $z \in C$, define r to be the sequence where $r_0 = 1$ and $r_n = z_{n-1}, n = 1, 2, 3, \cdots$. Then $r \in C$, and f(r) = z so $C \subset f(C)$. If $s = \{1, 0, 0, \cdots\}, s \in C$ but $f(s) = \{0, 0, 0, \cdots\} \notin C$. Hence $C \neq f(C)$. If f(x) = x for some x in C, then $x_n = x_{n+1}$ for $n = 0, 1, 2, \cdots$. Since $x_0 = 1, x_n = 1$ for all n and $x \notin C$. Therefore, f does not have a fixed point in C.

The following example shows that Banach's fixed point theorem does not generalize to nonself maps.

EXAMPLE 2. Let $X = C(\mathbf{R}, \mathbf{R})$ with $||f|| = \sup_{\substack{t \in \mathbf{R} \\ t \in \mathbf{R}}} |f(t)|$ for $f \in X$. Let $C = \{f \in X: f(t) = 0$ for all $t \leq 0$ and $\lim_{t \to \infty} f(t) \geq 1\}$. C is a closed and convex subset of X. Define $T: C \to X$ by $(Tf)(t) = \frac{1}{2} f(t+1)$. To see that $C \subset T(C)$ consider the following. For f in C set g(t) = 2f(t-1). g(t) = 0 for $t \leq 0$ since t-1 < 0 and f(t) = 0 for all $t \leq 0$. $\lim_{t \to \infty} g(t) = \lim_{t \to \infty} 2 f(t-1) \geq 2$. Thus $g \in C$ and (Tg)(t) = f(t). Hence $C \subset T(C)$. Let f(t) be defined as 0 if $t \leq 0, t$ if 0 < t < 1, and 1 if $t \geq 1$. Then $f \in C$. Now (Tf)(t) is 0 if $t \leq -1, \frac{1}{2}$ (t+1) if -1 < t < 0, and $\frac{1}{2}$ if $t \geq 0$. Therefore, $Tf \notin C$ and $C \neq T(C)$. For $f, g \in C, ||Tf - Tg|| = \frac{1}{2} ||f - g||$. If Tf = f for some $f \in C$, then $f(t) = \frac{1}{2} f(t+1)$ and it follows that f(n) = 0 for all integers n. Hence $\lim_{t \to \infty} f(t) \ngeq 1$ and $f \notin C$. Therefore T does not have a fixed point in C. Note that T is linear, one-to-one, and T(C) is closed.

We now turn to finding necessary and sufficient conditions for a non-self map to have a fixed point. Then it becomes clear that $C \subset f(C)$ is a natural assumption.

Let (X,t) be a topological space and $d: X \times X \to [0,\infty)$ such that d(x,y) = 0 if and only if x = y. X is said to be d-complete if $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$ implies that the sequence $\{x_n\}$ is convergent in (X,t). These spaces include complete (quasi) metric spaces and d-complete (symmetric) semi-metric spaces. In [2] and [3] several basic metric space fixed point theorems were extended to this setting. $f: X \to X$ is w-continuous at x if $x_n \to x$ as $n \to \infty$ implies $f(x_n) \to f(x)$ as $n \to \infty$.

The following definition was given by G. Jungck in [5].

DEFINITION 1. Two maps f and g are compatible if, for any sequence $\{x_n\}$ such that $\lim_n f(x_n) = \lim_n g(x_n) = t$ it follows that $\lim_n d(f(gx_n), g(fx_n)) = 0$. Commuting maps are compatible but the converse is false.

DEFINITION 2. Given a map f, a map g is compatible with f, if for any sequence $\{x_n\}$ such that $\lim_{n} f(x_n) = \lim_{n} g(x_n) = t$ it follows that $\lim_{n} f(g(x_n)) = g(t)$.

REMARK 1. If f and g are w-continuous and (X,d) is a metric space, then, using definition

2, f is compatible with g is equivalent to g is compatible with f. In this case, we say that f and g are compatible.

PROOF. Assume f and g are w-continuous and that $\lim_{n} f(x_n) = \lim_{n} g(x_n) = t$ implies $\lim_{n} f(g(x_n)) = g(t)$. If we are in a metric space,

and

$$\begin{split} &d(f(gx_n), g(fx_n)) \leq d(f(gx_n), g(t)) + d(g(t), g(fx_n)) \\ &d(g(fx_n), f(t)) \leq d(g(fx_n), f(gx_n)) + d(f(gx_n), f(t)). \end{split}$$

It follows that f is compatible with g implies that g is compatible with f. Interchanging g and f above gives the converse.

It also follows from the above argument that if f and g are w-continuous and (X,d) is a metric space, then the two definitions of compatibility are equivalent.

REMARK 2. If (X,t) is a d-complete topological space, g is w-continuous, and f and g commute, then g is compatible with f using definition 2. We use definition 2 for d-complete topological spaces.

Theorem 3 and its corollaries are generalizations of theorems due to Hicks and Rhoades [4] which are generalizations of theorems due to Jungck [5].

THEOREM 3. Let (X,t) be a Hausdorff *d*-complete topological space and suppose $f: C \to X$ where *f* is *w*-continuous and *C* is a closed subset of *X*. Then *f* has a fixed point in *C* if and only if there exists $\alpha \in (0,1)$ and a *w*-continuous function $g: C \to C$ such that $g(C) \subset f(C), g$ is compatible with *f* on $f^{-1}(C)$ and

(1) $d(g(x), g(y)) \le \alpha d(f(x), f(y))$ for all $x, y \in C$. Indeed, if (1) holds, f and g have a unique common fixed point.

PROOF. If f(a) = a for some $a \in C$, set g(x) = a for every $x \in C$. If $x \in f^{-1}(C)$, $f(x) \in C$ and g(f(x)) = a = f(a) = f(g(x)). If $x \in C, g(x) = a = f(a)$ gives $g(C) \subset f(C)$. Also, $0 = d(a, a) = d(g(x), g(y)) \le \alpha d(f(x), f(y))$ for all $x, y \in C$.

Suppose there exists $\alpha \in (0,1)$ and a *w*-continuous function $g: C \to C$ such that $g(C) \subset f(C)$, g is compatible with f on $f^{-1}(C)$ and $d(g(x), g(y)) \leq \alpha d(f(x), f(y))$ for all $x, y \in C$. Let $x_0 \in C$. $g(x_0) = f(x_1)$ for some $x_1 \in C$ since $g(C) \subset f(C)$. Construct a sequence $\{x_n\}$ with $\{x_n\} \subset C$ and $f(x_n) = g(x_{n-1})$ for $n = 1, 2, 3, \cdots$. Since

$$d(f(x_n), f(x_{n+1})) = d(g(x_{n-1}), g(x_n)) \le \alpha d(f(x_{n-1}), f(x_n)),$$

it follows that $d(f(x_n), f(x_{n+1})) \leq \alpha^{n-1} d(f(x_1), f(x_2))$. Hence $\sum_{n=1}^{\infty} d(f(x_n), f(x_{n+1})) < \infty$. The space is d-complete so there exists $p \in X$ with $\lim_{n \to \infty} f(x_n) = p$. $f(x_n) = g(x_{n-1}) \in C$ gives $p \in cl(C) = C$. Now f is w-continuous gives $f(g(x_{n-1})) \rightarrow f(p)$ as $n \rightarrow \infty$. Since g is compatible with f on $f^{-1}(C)$ and $p \in f^{-1}(C)$ we get $\lim_{n \to \infty} f(g(x_n)) = g(p)$. The space is Hausdorff so f(p) = g(p) and $p \in f^{-1}(C)$. Consider the sequence $y_n = p$ for all n. Then $f(y_n) \rightarrow f(p)$ as $n \rightarrow \infty$, $g(y_n) \rightarrow g(p)$ as $n \rightarrow \infty$, and compatibility give $f(g(p)) = f(g(y_n)) \rightarrow g(f(p))$ as $n \rightarrow \infty$. Thus, Therefore, f(f(p)) = f(g(p)) = g(f(p)) = g(g(p))f(g(p)) = g(f(p)).together with $d(g(p), g(gp)) \le \alpha d(f(p), f(gp))$ $= \alpha d(g(p), g(gp))$ implies g(p) = g(g(p)).Hence g(p) = g(g(p)) = f(g(p)) and g(p) is a common fixed point of f and g.

If x = f(x) = g(x), then $d(x, g(p)) = d(g(x), g(gp)) \le \alpha d(f(x), f(gp)) = \alpha d(x, g(p))$ gives x = g(p).

COROLLARY 1. Let (X,t) be a Hausdorff *d*-complete topological space and *C* be a closed

subset of X. Suppose $f: C \to X$ and $g: C \to C$, where f and g are w-continuous, commute on $f^{-1}(C)$, and $g(C) \subset f(C)$. If there exists $\alpha \in (0,1)$ and a positive integer k such that $d(g^k(x), g^k(y)) \leq \alpha d(f(x), f(y))$ for all $x, y \in C$, then f and g have a unique common fixed point.

PROOF. Clearly, g^k commutes with f on $f^{-1}(C)$ and $g^k(C) \subset g(C) \subset f(C)$. Applying the theorem to g^k and f gives a unique $p \in C$ such that $p = g^k(p) = f(p)$. Since f and g commute on $f^{-1}(C)$ and $p \in f^{-1}(C), g(p) = g(f(p)) = f(g(p)) = g^k(g(p))$ or g(p) is a common fixed point of f and g^k . Uniqueness of the common fixed point of f and g^k gives g(p) = p = f(p). If q = g(q) = f(q) then $g^k(q) = f(q)$ and q = p.

COROLLARY 2. Let n be a positive integer and let $\alpha > 1$. Suppose C is a closed subset of a Hausdorff d-complete topological space and $f: C \to X$ with $C \subset f(C)$. If $d(f^n(x), f^n(y))$ $\geq \alpha d(x, y)$ for all x, y in $(f^{n-1})^{-1}(C)$, then f has a fixed point in C.

PROOF. For n = 1, this follows from corollary 1 by letting g = I. f^n is one-to-one. $C \subset f(C)$ implies $C \subset f^n(C)$. Let h be the restriction of $(f^n)^{-1}$ to C. $h: C \to C$ and $d(h(x), h(y)) \leq \frac{1}{\alpha} d(x, y)$ for all $x, y \in C$. From corollary 1 with $k = 1, h = g^k = g$ and f = I, there exists a unique x_0 such that $h(x_0) = x_0$. Hence $f(x_0) = f^{n+1}(x_0) = f^n(f(x_0))$ or $h(f(x_0)) = (f^n)^{-1}(f(x_0)) = f(x_0)$. Uniqueness of the fixed point for h gives $x_0 = f(x_0)$. If f(y) = ythen $f^n(y) = y$ and y = h(y). Again, uniqueness of the fixed point for h gives $x_0 = y$.

REFERENCES

- 1. BROUWER, L.E.J., Über abbildung von mannigfaltigkeiten, Math. Ann. 71 (1910), 97-115.
- HICKS, T.L., Fixed point theorems for d-complete topological spaces I, Internat. J. Math. and Math. Sci. 15 (1992), 435-440.
- HICKS, T.L. and RHOADES, B.E., Fixed point theorems for d-complete topological spaces II, Math. Japonica 37 (1992), 847-853.
- 4. HICKS, T.L. and RHOADES, B.E., Fixed points for pairs of mappings in d-complete topological spaces, Internat. J. Math. and Math. Sci. 16 (1993), 259-266.
- 5. JUNGCK, G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci. 9 (1986), 771-779.
- KIRK, W.A., A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 72 (1965), 1004-1006.
- 7. NADLER, JR., S.B., Examples of fixed point free maps from cells onto larger cells and spheres, Rocky Mnt. J. Math. 11 (1981), 319-325.