(QUASI) - UNIFORMITIES ON THE SET OF BOUNDED MAPS

BASIL K. PAPADOPOULOS

Democritus University of Thrace Department of Mathematics 67100 Xanthi, Greece

(Received October 21, 1992 and in revised form May 24, 1993)

ABSTRACT. From real analysis it is known that if a sequence $\{f_n, n \in \mathbb{N}\}$ of real-valued functions defined and bounded on XCR converges uniformly to f, then f is also bounded and the sequence $\{f_n, n \in \mathbb{N}\}$ is uniformly bounded on X. In the present paper we generalize results as the above using (quasi)-uniform structures.

AMS (MOS): 54C35, 54E15. KEY WORDS: Function spaces, Uniformity of uniform convergence, Set of bounded functions.

1. INTRODUCTION

Let (Y, \mathcal{U}) be a uniform space. A set AcY is said \mathcal{U} -bounded (see [1], [3] and [6]) (there, " \mathcal{U} -bounded" is called "bounded"), if given an entourage Ve \mathcal{U} , there exists a positive integer n and a finite set FcY, such that AcVⁿ(F). Also it is known that a set AcY is precompact (totally bounded) in (Y, \mathcal{U}) if given an entourage Ve \mathcal{U} , there exists a finite set FcY, such that V(F)>A (see [1]). Instead of the term "precompact" we will use in the following the term \mathcal{U}^* -bounded.

It is obvious that the class of \mathcal{U}^* -bounded subsets of a uniform space (Y, \mathcal{U}) is broader than the class of \mathcal{U} -bounded subsets. It is well known that \mathcal{U} -boundedness and \mathcal{U}^* -boundedness are also boundedness in the sense of Hu [4].

If X is a set, if (Y, U) is a uniform space and if a is a covering of X, then the uniformity u_a of uniform convergence on members of a on $\mathscr{F}(X,Y)$, (the set of all functions from X to Y) is generated by the subbasis $\mathscr{Y} = \{A, V\}: A \in a, V \in U\}$, where $(A, V) = \{(f,g) \in \mathscr{F}(X,Y) \times \mathscr{F}(X,Y): (f(x), g(x)) \in V, \text{ for each } x \in A\}$. The corresponding topology of u_a, \mathscr{I}_u , is called the topology of uniform convergence on the members of a. The subbasic \mathscr{I}_u -neighborhoods of an arbitrary $f \in \mathscr{F}(X,Y)$ are of the form $(A, V)(f) = \{g \in \mathscr{F}(X,Y): (f,g) \in (A,V)\}$, where $A \in a, V \in \mathcal{U}$ (see [5]).

We will also use the following symbols:

 $\mathcal{B}_{a}(X,Y) = \{f \in \mathcal{F}(X,Y): f(A) \text{ is } \mathcal{U}\text{-bounded for every } A \in a\}$

 $\mathcal{B}^*_a(X,Y) = \{f \in \mathcal{F}(X,Y): f(A) \text{ is } \mathcal{U}^*\text{-bounded for every } A \in a\}$

 $\mathcal{B}(X,Y) = \{ f \in \mathcal{F}(X,Y) : f(X) \text{ is } U\text{-bounded} \}$

 $\mathcal{B}^*(X,Y) = \{ f \in \mathcal{F}(X,Y) : f(X) \text{ is } \mathcal{U}^*\text{-bounded} \}.$

The uniformity of uniform convergence is denoted by μ , the topology of uniform convergence by \mathcal{I}_{μ} (see [5]).

By $(\mathcal{F}(X, Y), \mathcal{I})$ we denote the set $\mathcal{F}(X, Y)$ equipped with the topology \mathcal{I} .

B.K. PAPADOPOULOS

2. THE SET OF BOUNDED FUNCTIONS OF $\mathcal{F}(X, Y)$

PROPOSITION 2.1. Let a be a collection of subsets covering the set X and (Y, \mathcal{U}) a uniform space. The collection $\mathcal{Y} = \{\langle A, V \rangle: A \in a, V \in \mathcal{U}\}$, where $\langle A, V \rangle = \{(f,g) \in \mathcal{F}(X,Y) \times \mathcal{F}(X,Y): f(A) \subset V(g(A))\}$, is a subbasis for a quasi uniformity w_a on $\mathcal{F}(X,Y)$, which is contained in the uniformity u_a of uniform convergence on the members of a.

PROOF. Let an arbitrary $\langle A, V \rangle \in \mathcal{Y}$. Then $(f, f) \in \langle A, V \rangle$, because $f(A) \subset V(f(A))$. Also given an arbitrary $\langle A, V \rangle \in \mathcal{Y}$ we choose a U $\in \mathcal{U}$, UoUCV and we observe that $\langle A, U \rangle$ o $\langle A, U \rangle \subset \langle A, V \rangle$.

Now we prove that $w_a c u_a$. Let $\langle A, V \rangle \in \mathcal{Y}$. We choose a symmetric $U \in \mathcal{U}$, U < V and we have that $(A, U) < \langle A, V \rangle$. Indeed if $(f, g) \in (A, U)$, then $(f(x), g(x)) \in U$, for each $x \in A$. This means that $f(x) \in U^{-1}(g(x)) = U(g(x))$ for each $x \in A$ and thus f(A) c U(g(A)). So $(A, U) < \langle A, V \rangle$ and hence $w_a c u_a$.

REMARK 2.2. a) The quasi uniformity w_a^{-1} is generated by the sets of the form $[A,V] = \{(f,g) \in \mathcal{F}(X,Y) \times \mathcal{F}(X,Y): g(A) \subset V(f(A)), \text{ where } A \in a, V \in \mathcal{U}. \text{ It is obvious that the conjugate quasi uniformity } w_a^{-1} \text{ is also contained in } u_a^{-1}$.

obvious that the conjugate quasi uniformity w_a^{-1} is also contained in u_a . Finally the supremum uniformity $w_a \vee w_a^{-1}$ is also contained in u_a and has a basis $\mathcal{B} = \{\langle A, V \rangle \cap [A, V] : A \in a, V \in \mathcal{U}\}$, where $\langle A, V \rangle \cap [A, V] = \{(f,g) \in \mathcal{F}(X,Y) \times \mathcal{F}(X,Y) : f(A) \subset V(g(A)) \text{ and } g(A) \subset V(f(A))\}$.

b) If we consider $a=\{X\}$, it is easily seen that $\mathcal{Y}=\{<X,V>: V\in\mathcal{U}\}$ is a basis for w_{α} .

PROPOSITION 2.3. Let X be a set, a be a collection of subsets covering X and let (Y, U) be a uniform space. Then the sets $\mathcal{B}_a(X, Y)$, $\mathcal{B}_a^*(X, Y)$ are closed in the topological space $(\mathcal{F}(X, Y), \mathcal{T}_w)$.

PROOF. First we prove that $\mathcal{B}_{a}(X,Y)$ is closed in the topological space $(\mathscr{F}(X,Y), \mathscr{I}_{w_{a}})$. Let a net $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{B}_{a}(X,Y)$, which converges to f with respect to w_{a} . We prove that $f \in \mathcal{B}_{a}(X,Y)$. Let an arbitrary VeU and Aea. Then $f \in \langle A, V \rangle(f)$. So, there exists a $\lambda_{0} \in \Lambda$, such that for each $\lambda > \lambda_{0}$, $f_{\lambda} \in \langle A, V \rangle(f)$. Let a $\lambda > \lambda_{0}$. Then $(f, f_{\lambda}) \in \langle A, V \rangle$, which means that $f(A) \subset V(f_{\lambda}(A))$. But $f_{\lambda} \in \mathcal{B}_{a}(X,Y)$, so there exists meN and a finite set FcY, such that $f_{\lambda}(A) \subset V^{m}(F)$. Thus $f(A) \subset V^{m+1}(F)$, which means that $f \in \mathcal{B}_{a}(X,Y)$ and hence $\mathcal{B}_{a}(X,Y)$ is closed in the topological space $(\mathscr{F}(X,Y), \mathscr{I}_{w})$.

It can be also easily proved that $\mathscr{B}^*_{\alpha}(X,Y)$ is closed in the topological space $(\mathscr{F}(X,Y), \mathscr{I}_{u_{\alpha}})$. The proof is the same as the above if we observe that $f \in (A, U)$ (f), where $U \in \mathcal{U}$, UoUcV and that $f(A) \subset (UoU)(F) \subset V(F)$.

COROLLARY 2.4. Let X be a set, a be a collection of subsets covering X and let (Y, U) be a uniform space. Then the sets $\mathcal{B}_{a}(X, Y)$, $\mathcal{B}_{a}^{*}(X, Y)$ are closed in $(\mathscr{F}(X, Y), \mathcal{I}_{u})$. Hence, $\mathcal{B}_{a}(X, Y)$, $\mathcal{B}_{a}^{*}(X, Y)$ are complete if (Y, U) is complete.

COROLLARY 2.5. Let X be a set and let (Y, U) be a uniform space. Then the sets $\mathcal{B}(X, Y)$, $\mathcal{B}^*(X, Y)$ are closed in $(\mathcal{F}(X, Y), \mathcal{T}_{\mu})$. Hence, $\mathcal{B}(X, Y)$, $\mathcal{B}^*(X, Y)$ are complete if (Y, U) is complete.

PROOF. We set in the previous corollary $a=\{X\}$.

REMARK 2.6. If (X,d) is a metric space and \mathcal{U}_d is its corresponding uniformity generated by d, it is known (see [3]) that \mathcal{U}_d -boundedness coincides with d-boundedness. So by the above corollary corresponding theorems of metric spaces (see [2]) are generalized.

694

It is also known (see [3]) that in uniform locally totally bounded spaces, U-boundedness and U^* -boundedness coincide.

3. UNIFORMLY BOUNDED NETS

Let us recall the definition of uniform boundedness of a real- valued sequence of functions:

A sequence $\{f_n, n \in \mathbb{N}\}$, where $f_n: X \to \mathbb{R}$ is said uniformly bounded iff there exists M>0, such that for each $n \in \mathbb{N}$, $|f_n(x)| \leq M$ for each $x \in X$.

Motivated by this fact we give the following definition.

DEFINITION 3.1. Let X be a set, α be a covering of X and let be (Y, U) a uniform space.

a) A net $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{F}(X, Y)$ is said to be finally \mathcal{U} -uniformly bounded on the members of a, if for each $V \in \mathcal{U}$, there exists a λ_0 , a finite set FcY and a meN, such that $f_{\lambda}(A) \subset V^{\mathbf{m}}(F)$, for each $\lambda > \lambda_0$ and for each $A \in a$. We also say that $\{f_{\lambda}, \lambda \in \Lambda\}$ is uniformly bounded on the members of a if the last inclusion holds for each $\lambda \in \Lambda$.

b) A net $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{F}(X, Y)$ is said to be finally \mathcal{U}^* -uniformly bounded on the members of a, if for each $V \in \mathcal{U}$, there exists a $\lambda_0 \in \Lambda$ and a finite FcY, such that $f_{\lambda}(A) \subset V(F)$ for each $\lambda > \lambda_0$ and for each $A \in a$.

If the inclusion holds for every $\lambda \in \Lambda$, we say that $(f_{\lambda}, \lambda \in \Lambda)$ is \mathcal{U}^* -uniformly bounded on the members of a.

If A={X} we use the notation "U-uniformly bounded" instead of "U-uniformly bounded on the members of $a={X}$ ".

PROPOSITION 3.2. Let X be a space and let a be a covering of X and (Y, U)a uniform space. Let $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{B}_{a}(X, Y)$ (resp. $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{B}_{a}^{*}(X, Y)$) be a net converging to f with respect to the topology $\mathcal{T}_{uava} vua^{-1}$. Then $\{f_{\lambda}, \lambda \in \Lambda\}$ is a finally U-uniformly (resp. U*-uniformly) bounded net on the members of a.

PROOF. First we suppose that $\{f_{\lambda}, \lambda \in A\} \subset \mathcal{B}_{\alpha}(X, Y)$ and we prove that $\{f_{\lambda}, \lambda \in A\}$ is finally U-uniformly bounded on the members of a. Let VeU and Aea. Then [A, V](f) is a $\mathcal{T}_{w_{\alpha}^{-1}}$ neighborhood of f, so it is also a $\mathcal{T}_{w_{\alpha}^{-1}}$ neighborhood of f. So, there exists a $\lambda_0 \in A$, such that $f_{\lambda} \in [A, V](f)$, for each $\lambda > \lambda_0$, which means that $f_{\lambda}(A) \subset V(f(A))$ for each $\lambda > \lambda_0$. But since the net $\{f_{\lambda}, \lambda \in A\}$ converges to f with respect to the topology $\mathcal{T}_{w_{\alpha}^{-1}}$, it also converges to f with respect to $\mathcal{T}_{w_{\alpha}}$. So by Proposition 2.2, $f \in \mathcal{B}_{\alpha}(X, Y)$. Thus, there exists a meN and F finite, FcY, such that $f(A) \subset V^{\mathfrak{m}}(F)$. So by (1) we have that $f_{\lambda}(A) \subset V^{\mathfrak{m}+1}(F)$ for each $\lambda > \lambda_0$. This means that $\{f_{\lambda}, \lambda \in A\}$ is finally U-bounded on the members of a.

Now we suppose that $\{f_{\lambda}, \lambda \in A\} \subset \mathcal{B}^{*}_{a}(X, Y)$ and we prove that $\{f_{\lambda}, \lambda \in A\}$ is finally \mathcal{U}^{*} -uniformly bounded on the members of a. Let $V \in \mathcal{U}$ and $A \in a$. We choose a $U \in \mathcal{U}$, such that $U \circ U \subset V$. Then $f \in [A, U](f)$ and following the above process we prove that $f_{\lambda}(A) \subset (U \circ U)(F) \subset V(F)$ for each $\lambda > \lambda_{0}$.

PROPOSITION 3.3. Let X be a set and let a covering of X and let (Y, U) be a uniform space. If $\{f_n, n \in \mathbb{N}\}$ is a sequence contained in $\mathcal{B}_a(X, Y)$, (resp. in $\mathcal{B}_a^*(X, Y)$) and converging to f with respect to the topology $\mathcal{T}_{u_a \vee u_a^{-1}}$, then $\{f_n, n \in \mathbb{N}\}$ is U (resp. U^*)-uniformly bounded on the members of a.

PROOF. Let $\{f_n, n \in \mathbb{N}\} \subset \mathcal{B}_a(X, Y)$. We prove that $\{f_n, n \in \mathbb{N}\}$ is *U*-uniformly bounded on the members of *a*. Let an arbitrary $V \in U$ and let an arbitrary $A \in a$. By

the previous proposition there exists a $n_0 \in \mathbb{N}$, a finite subset FcY and a $m \in \mathbb{N}$, such that $f_n(A) < V^m(F)$ for each $n \in \mathbb{N}$, $n \ge n_0$. But the functions f_n , $1 \le n \le n_0$, are \mathcal{U} -bounded on the members of a, so for the given $V \in \mathcal{U}$, there exists $m \in \mathbb{N}$ and finite subsets $F_n < Y$, $1 \le n \le n_0$, such that $f_n(A) < V^m(F_n)$, $1 \le n \le n_0$ Setting $m^* = \max\{m_1, m_2, \dots, m_n, m\}$ and $F^* = F \cup (\bigcup_{n=1}^{n} F_n)$ we observe that $V^m(F^*) > f_n(A)$, for each $n \in \mathbb{N}$, which means that $\{f_n, n \in \mathbb{N}\}$ is \mathcal{U} -uniformly bounded on the members of a.

For the other case we follow the same process as above, choosing $U{\in}\,\mathcal{U},$ UoUcV.

COROLLARY 3.4. Let X be a set and let a be a covering of X and (Y, U) a uniform space. Let $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{B}_{a}(X, Y)$ (resp. $\{f_{\lambda}, \lambda \in \Lambda\} \subset \mathcal{B}_{a}^{*}(X, Y)$) be a net converging to f with respect to the topology $\mathcal{T}_{u_{a}}$. Then $\{f_{\lambda}, \lambda \in \Lambda\}$ is finally U (resp. U^{*})-uniformly bounded net on the members of a.

PROOF. It is an immediate consequence of Proposition 3.2 if we observe that $w_a v w_a^{-1} < u_a$.

COROLLARY 3.5. Let X be a set and (Y, U) be a uniform space. Let $\{f_{\lambda}, \lambda \in \Lambda\}$ c $\mathcal{B}_{a}(X, Y)$, (resp. $\{f_{\lambda}, \lambda \in \Lambda\}$ c $\mathcal{B}_{a}^{*}(X, Y)$) be a net converging to f with respect to the topology \mathcal{T}_{u} . Then $\{f_{\lambda}, \lambda \in \Lambda\}$ is finally U-uniformly (resp. U*-uniformly bounded.

PROOF. It is an immediate consequence of the above corollary if we set $a=\{X\}$.

COROLLARY 3.6. Let X be a set and a be a covering of X and let (Y, U) be a uniform space. If $\{f_n, n \in \mathbb{N}\}$ is a sequence contained in $\mathcal{B}_a(X, Y)$ (resp. in $\mathcal{B}_a^*(X, Y)$) and converging to f with respect to the topology \mathcal{I}_u , then $\{f_n, n \in \mathbb{N}\}$ is \mathcal{U} (resp. \mathcal{U}^*)-uniformly bounded on the members or a.

COROLLARY 3.7. Let X be a set and (Y, \mathcal{U}) be a uniform space. If $\{f_n, n \in \mathbb{N}\}$ is a sequence contained in $\mathcal{B}(X, Y)$, (resp. in $\mathcal{B}^*(X, Y)$) and converging to f with respect to the topology \mathcal{T}_{μ} then $\{f_n, n \in \mathbb{N}\}$ is \mathcal{U} (resp. \mathcal{U}^*)-uniformly bounded.

Let us complete the above paragraph by giving a classical theorem of real analysis, as a corollary of the above results.

COROLLARY 3.8. If the sequence $\{f_n, n \in \mathbb{N}\}$ of real - valued functions defined and bounded on X converges uniformly to f, then f is also bounded and the sequence $\{f_n, n \in \mathbb{N}\}$ is uniformly bounded on X.

REFERENCES

- 1. BURBAKI, N. General Topology, Part 1, 1966.
- 2. BURBAKI, N. General Topology, Part 2, 1966.
- 3. HEJCMAN, J. Czechoslovak. Math. J., 84 (1959), 544-562.
- 4. HU, S.T. <u>Boundedness in a topological space</u>, J. Math. Pure. Appl. 28 (1949), 287-320.
- 5. MURDESHWAR, M.G. and NAIMPALY S.A. <u>Quasi-uniform</u> topological spaces, Nootdhoff, Gronigen, 1966.
- MURDESHWAR, M.G. THECKEDATH K.K. <u>Boundedness</u> in a <u>quasi</u> <u>uniform</u> <u>space</u>, Canad. Bull. 13 (1970) 367-370.