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ABSTRACT. From real analysis it is known that if a sequence {f ne} of

real-valued functions defined and bounded on Xc converges uniformly to f,

then f is also bounded and the sequence {f nc} is uniformly bounded on X.

In the present paper we generalize results as the above using (quasi)-uniform

structures.
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I. III’RODUCTION

Let (Y,) be a uniform space. A set AcY is said -bounded (see [I], [3]

and [6]) (there, "-bounded" is called "bounded"), if given an entourage V,

there exists a positive integer n and a finite set FcY, such that AfVn(F).

Also it is known that a set A(Y is precompact (totally bounded) in (Y,) if

given an entourage Vc, there exists a finite set FY, such that V(F))A (see

ill). Instead of the term "precompact" we will use in the following the term

’-bounded.

It is obvious that the class of ’-bounded subsets of a uniform space

(Y,) is broader than the class of -bounded subsets. It is well known that

-boundedness and ’-boundedness are also boundedness in the sense of Hu [4].

Given a uniform space (Y,) by we denote the topology of the uniform

space.

If X is a set, if (Y,) is a uniform space and if a is a covering of X,

then the uniformity of uniform convergence on members of a on (X,Y), (the

set of all functions from X to Y) is generated by the subbasis V {A,V)’Ac,
Vc}, where (A,V) {(f,g) c (X,Y) (X,Y)- (f(x), g(x)) c V, for each xcA}.
The corresponding topology of u(z,u ,is called the topology of uniform

convergence on the members of e. The subbasic -neighborhoods of an

arbitrary fc(X,Y) are of the form (A,V)(f) {g c (X,Y)- (f,g) c (A,V)},
where Ace, Vc (see [5]).

We will also use the following symbols:

(X Y) {f c (X,Y): f(A) is -bounded for every Ace}a
’(X,Y) {f c (X Y). f(A) is ’-bounded for every Ace}
(X,Y) {f c (X,Y). f(X) is -bounded}

’(X,Y) {f c (X,Y). f(X) is ’-bounded}.
The uniformity of uniform convergence is denoted by , the topology of

uniform convergence by (see [5]).

By ((X,Y),) we denote the set (X,Y) equipped with the topology .
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2. THE SET OF BOUNDED FUNCTIONS OF (X,Y)

PROPOSITION 2. 1. Let a be a collection of subsets covering the set X and

(Y,) a uniform space. The collection {<A,V>:Aca, Vc}, where <A,V>

{(f,g) c (X,Y) (,Y)’ f(A) c V(g(A))}, is a subbasis for a quasi

uniformity on (X,Y), which is contained in the uniformity u of uniform

convergence on the members of

PROOF. Let an arbitrary <A,V>c. Then (f,f)c<A,V>, because f(A)cV(f(A)).

Also given an arbitrary <A,V>c we choose a Uc, UoUcV and we observe that

<A,U> o <A,U> c <A,V>.

Now we prove that ca Let <A,V>W. We choose a symmetric U, U<V and

we have that (A,U)c<A,V>. Indeed if (f,g)(A,U), then (f(x),g(x)}cU, for each

xcA. This means that f(x)cU-1{g(x)} U(g(x)) for each xcA and thus

f(A)cU(g(A)}. So (A,U)c<A,V> and hence cu

REMARK 2.2. a) The quasi uniformity -I is generated by the sets of the

form [A,V] {(f,g) c (X,Y) x {X,Y}: g{A} c V(f{A)}, where Ace, Vc. It is

obvious that the conjugate quasi uniformity is also contained in u
-I

Finally the supremum uniformity m v s also contained in u and has a

basis Z {<A,V> [A,V]: Ace, Vc}, where <A,V> [A,V] {(f,g} c (X,Y)

(X,Y)- f(A) c V(g(A)) and g(A)cV(f(A))}.

b) If we consider o={X}, it is easily seen that W {<X,V>" Vc} is a

basis for

PROPOSITION 2.3. Let X be a set, be a collection of subsets covering X
and let (Y,) be a uniform space. Then the sets (X Y) *{X,Y) are closed in

the topological space ((X,Y), ).

PROOF. First we prove that (X Y) is closed in the topological space
((X,Y) ). Let a net {f EtA} (X,Y) which converges to f witha

respect to We prove that f (X,Y) Let an arbitrary Vc and Aco. Then

fc<A,V>(f). So, there exists a oCA’ such that for each >o’ fEc<A’V>(f)" Let

a >"o Then (f, f)c<A, V>, which means that f(A)V(f(A)). But fc(X,Y), so

there exists mc and a finite set FY, such that f(A)cV(F). Thus

f(A)V+I{F), which means that fc {X,Y) and hence (X,Y) is closed in the

topological space ({X,Y),

It can be also easily proved that ’(X Y) is closed in the topological

space ((X,Y} The proof is the same as the above if we observe that

fc<A,U>{f}, where Uc, UoUV and that f(A) {UoU)(F)V{F).

COROLLARY 2.. Let X be a set, be a collection of subsets covering X
and let (Y,) be a uniform space. Then the sets (X Y) (X,Y) are closed in

({X,Y}, }. Hence, {X,Y), ’(X,Y) are complete if (Y,) is complete.

COROLLARY 2.5. Let X be a set and let (Y,) be a uniform space. Then the

sets (X,Y), (X,Y) are closed in ((X,Y), ). Hence, (X,Y), ’(X,Y} are

complete if (Y,) is complete.

PROOF. We set in the previous corollary o={X}.

REMARK 2.6. If (X,d) is a metric space and is its corresponding
d

uniformity generated by d, it is known (see [3]) that boundedness
d

coincides with d-boundedness. So by the above corollary corresponding theorems

of metric spaces (see [2]) are generalized.
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It is also known (see [3]) that in uniform locally totally bounded

spaces, if-boundedness and if’-boundedness coincide.

3. UNIFORMLY BOUNDED NETS

Let us recall the definition of uniform boundedness of a real- valued

sequence of functions:

A sequence {f nc}, where f :X is said uniformly bounded iff there

exists M>0, such that for each nc, If (x) - M for each xcX.

Motivated by this fact we give the following definition.

DEFINITION 3.1. Let X be a set, a be a covering of X and let be (Y, if) a

uniform space.

a) A net {f AcA} c (X,Y) is said to be finally if-uniformly bounded onA’
the members of a, if for each Vcif there exists a A a finite set FcY and a

o
mc, such that f (A) V(F), for each A>A and for each Ace. We also say that

o
{f AcA} is uniformly bounded on the members of e if the last inclusion holds

A’
for each

b) A net {f AcA} g(X,Y) is said to be finally if’-uniformly bounded onA’
the members of e, if for each Vcif, there exists a A cA and a finite FcY, such

o
that f (A)=V(F) for each A>A and for each

o
If the inclusion holds for every AcA, we say that (f AcA} is

if’-uniformly bounded on the members of a.

If A={X} we use the notation "/-uniformly bounded" instead of

"if-uniformly bounded on the members of e={X}".

PROPOSITION 3.2. Let X be a space and let e be a covering of X and (Y, if)

a uniform space. Let {f AcA} c (X,Y) (resp. {f )cA} c ’(X,Y)) be a net

converging to f with respect to the topology -,. Then {f AcA} is a
/ V/ A’

finally If-uniformly (resp. if’-uniformly) bounded net on the members of

PROOF. First we suppose that {f AcA} (X,Y) and we prove thatA’ (

AcA} is finally if-uniformly bounded on the members of (z. Let Vcif and Aca. Then

[A,V] (f) is a -I neighborhood of f, so it is also a -, neighborhood of

f. So, there exists a A cA, such that f c [A V] (f) for each A>A which means
o O’

that f (A) V(f(A)) for each A>A But since the net {f AcA} converges to fo
with respect to the topology -I, it also converges to f with respect to

So by Proposition 2.2, fc (X,Y). Thus, there exists a mc and F finite,

FcY, such that f(A)cVm(F). So by (I) we have that f (A)cV+I(F) for each
o

This means that {f AcA} is finally if-bounded on the members ofA’
Now we suppose that {f AcA} c ’(X,Y) and we prove that {f AcA} isA’ z

finally if’-uniformly bounded on the members of . Let Vcif and Ac(z. We choose a

Ucif, such that UoUcV. Then fc[A,U] (f) and following the above process we prove

that f (A) < (UoU)(F) V(F) for each
o

PROPOSITION 3.3. Let X be a set and let (z covering of X and let (Y, if) be

a uniform space. If {f nc} is a sequence contained in (X,Y) (resp. inn’ c
’(X,Y)) and converging to f with respect to the topology -,, then

{f nc} is if (resp. if’)-uniformly bounded on the members of a.

PROOF. Let {f nc} Z (X,Y). We prove that {f nc} is if-uniformlyc
bounded on the members of a. Let an arbitrary Vcif and let an arbitrary Aca. By
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the previous proposition there exists a n e a finite subset FcY and a me,
0

such that f (A)cVmCF) for each ne, nzn But the functions f 1-<n-<n are
0 n’ O’

I/-bounded on the members of , so for the glven V/, there exlsts m and

finite subsets F cY, -< n <- n such that f (A) c V n(F <- n -< n
0 0

Setting m max{ml, m2’’ ..mn, m} and F F u U Fn we observe that
n=1

V(F) ) f (A), for each ne, which means that {f ne} is I/-uniformly

bounded on the members of a.

For the other case we follow the same process as above, choosing Uel,

UoUcV.

COROLLARY 3.4. Let X be a set and let a be a covering of X and (Y,J) a

uniform Let {_f4, eA} c a(X,Y) (resp. {f4, eA} c (Xa Y)) be a netspace

converging to f with respect to the topology a .Then {f XeA} is finally
4’

{resp. I/’)-uniformly bounded net on the members of a.

PROOF. It is an immediate consequence of Proposition 3.2 if we observe
-I

that u v u c a

COROLLARY 3.5. Let X be a set and (Y I/) be a uniform space. Let {f

c (X,Y) (resp. {f eA} c (X,Y)) be a net converging to f with respect

to the topology a" Then {f4’ eA} is finally I/-uniformly (resp. It=-uniformly

bounded.

PROOF. It is an immediate consequence of the above corollary if we set

a={X}.

COROLLARY 3.6. Let X be a set and a be a covering of X and let {Y,I/} be a

uniform space. If {f ne} is a sequence contained in (X,Y) (resp. in
a

(X,Y)) and converging to f with respect to the topology ff then {f
a

a
is It (resp. It’)-uniformly bounded on the members or a.

COROLLARY 3.7. Let X be a set and (Y,I/) be a uniform space. If {f

is a sequence contained in (X,Y), (resp. in ’(X,Y)) and converging to f

with respect to the topology ff then {f ne} is It (resp. l/’)-uniformly

bounded.

Let us complete the above paragraph by giving a classical theorem of real

analysis, as a corollary of the above results.

COROLLARY 3.8. If the sequence {f ne} of real valued functions

defined and bounded on X converges uniformly to f, then f is also bounded and

the sequence {f ne} is uniformly bounded on X.
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