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ABSTRACT. From real analysis it is known that if a sequence (fn, neN} of
real-valued functions defined and bounded on XcR converges uniformly to f,
then f is also bounded and the sequence {fn, neN} is uniformly bounded on X.
In the present paper we generalize results as the above using (quasi)-uniform

structures.
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1. INTRODUCTION

Let (Y,U) be a uniform space. A set AcY is said U-bounded (see [1], [3]
and [6]) (there, "U-bounded" is called "bounded"), if given an entourage Vel,
there exists a positive integer n and a finite set FcY, such that AcV"(F).
Also it is known that a set AcY is precompact (totally bounded) in (Y,U) if
given an entourage Vel, there exists a finite set FcY, such that V(F)>A (see
[1]). Instead of the term "precompact" we will use in the following the term
U*-bounded.

It is obvious that the class of U*-bounded subsets of a uniform space
(Y,U) is broader than the class of U-bounded subsets. It is well known that
U-boundedness and U*-boundedness are also boundedness in the sense of Hu (4].

Given a uniform space (Y,U) by S‘T,u we denote the topology of the uniform
space.

If X is a set, if (Y,U) is a uniform space and if a is a covering of X,
then the uniformity u, of uniform convergence on members of a on ¥(X,Y), (the
set of all functions from X to Y) is generated by the subbasis Y = {A,V):Aea,
VeU}, where (A,V) = {(f,g) € F(X,Y) x F(X,Y): (f(x), g(x)) € V, for each xeA}.
The corresponding topology of Uy S’Tu »is called the topology of uniform

a

convergence on the members of a. The subbasic 7u -neighborhoods of an

arbitrary fe¥(X,Y) are of the form (A,V)(f) = {g € ?c(lX,Y): (f.g) € (A, V)},
where Aea, Vel (see [5]).
We will also use the following symbols:
ﬁa(X,Y) = {f € F(X,Y): f(A) is U-bounded for every Aea}

B&(X,Y) = {f € F(X,Y): f(A) is U*-bounded for every Aea}
B(X,Y) = {f € F(X,Y): f(X) is U-bounded}
B*(X,Y) = {f € F(X,Y): £(X) is U*-bounded}.

The uniformity of uniform convergence is denoted by u, the topology of

uniform convergence by ?Tu (see [5]).

By (¥(X,Y),J9) we denote the set F(X,Y) equipped with the topology 9J.
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2. THE SET OF BOUNDED FUNCTIONS OF ¥(X,Y)

PROPOSITION 2.1. Let a be a collection of subsets covering the set X and
(Y,U) a uniform space. The collection Y = {<A,V>:Aea, VelU}, where <A,V> =
{(f,g) € F(X,Y) x F(X,Y): f(A) < V(g(A))}, is a subbasis for a quasi
uniformity w, on F(X,Y), which is contained in the uniformity u, of uniform
convergence on the members of a.

PROOF. Let an arbitrary <A,V>eY. Then (f,f)e<A,V>, because f(A)cV(f(A)).
Also given an arbitrary <A,V>eY we choose a UelU, UoUcV and we observe that
<A,U> o <A,U> c <A, V>.

Now we prove that wocu,. Let <A,V>eY. We choose a symmetric UelU, UcV and
we have that (A,U)c<A,V>. Indeed if (f,g)e(A,U), then (f(x),g(x))eU, for each
xeA. This means that f(x)eU-l(g(x)) = U(g(x)) for each xeA and thus
f(A)cU(g(A)). So (A,U)c<A,V> and hence wcu,.

REMARK 2.2. a) The quasi uniformity u.a;l is generated by the sets of the
form [A,V] = {(f,g) € F(X,Y) x F(X,Y): g(A) c V(f(A)), where Aea, Vel. It is
obvious that the conjugate quasi uniformity w(;l is also contained in Uy

Finally the supremum uniformity u.tav w;l is also contained in u, and has a
basis B = {<A,V> n [A,V]: Aea, VelU}, where <A,V> n [A,V] = {(f,g) € F(X,Y) x
F(X,Y): f(A) < V(g(A)) and g(A)cV(f(A))}.

b) If we consider a={X}, it is easily seen that Y = {<X,V>: VelU} is a
basis for wa.

PROPOSITION 2.3. Let X be a set, a be a collection of subsets covering X
and let (Y,U) be a uniform space. Then the sets Ba(X,Y), fB;(X,Y) are closed in

the topological space (?(X,Y).?w ).
a
PROOF. First we prove that Ba(X,Y) is closed in the topological space

(¥(X,Y), f7w ). Let a net (fx, A€A} c Ba(X,Y), which converges to f with
respect to u;:.' We prove that feBa(X.Y). Let an arbitrary Vel and Aea. Then
fe<A,V>(f). So, there exists a AoeA, such that for each A>Ao, f}\e<A, V>(f). Let
a 7\>7\°. Then (f,fx)e<A,V>, which means that f(A)cV(fA(A)). But fAeBa(X,Y), so
there exists meN and a finite set FcY, such that fA(A)cV"(F). Thus
f(A)cV"l(F), which means that feBa(X,Y) and hence Ba(X,Y) is closed in the

topological space (9(X,Y),9w ).
a
It can be also easily proved that B;(X,Y) is closed in the topological

space (¥(X,Y), 7w ). The proof is the same as the above if we observe that

a
fe<A,U>(f), where UelU, UoUcV and that f(A)c (UoU)(F)cV(F).
COROLLARY 2.4. Let X be a set, a be a collection of subsets covering X
and let (Y,U) be a uniform space. Then the sets ﬂa(X,Y), B;(X,Y) are closed in

(F(X,Y), ffu ). Hence, Ba(X,Y), ﬁa(X,Y) are complete if (Y,U) is complete.
a
COROLLARY 2.5. Let X be a set and let (Y,U) be a uniform space. Then the

sets B(X,Y), B*(X,Y) are closed in (%(X,Y), 7u). Hence, B(X,Y), B*(X,Y) are
complete if (Y,U) is complete.

PROOF. We set in the previous corollary a={X}.

REMARK 2.6. If (X,d) is a metric space and ud is its corresponding
uniformity generated by d, it is known (see [3]) that ‘Ud— boundedness
coincides with d-boundedness. So by the above corollary corresponding theorems

of metric spaces (see [2]) are generalized.
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It is also known (see [3]) that in uniform locally totally bounded

spaces, U-boundedness and U*-boundedness coincide.

3. UNIFORMLY BOUNDED NETS

Let us recall the definition of uniform boundedness of a real- valued
sequence of functions:

A sequence (fn, neN}, where fn:X—)lR is said uniformly bounded iff there
exists M>0, such that for each neN, |fn(x)| = M for each xeX.

Motivated by this fact we give the following definition.

DEFINITION 3.1. Let X be a set, a be a covering of X and let be (Y,U) a
uniform space.

a) A net (fx’ AeA} c F(X,Y) is said to be finally U-uniformly bounded on
the members of a, if for each VelU, there exists a Ao, a finite set FcY and a
meN, such that fx (A) < V*(F), for each >\>7\° and for each Aea. We also say that
(fx' A€A} is uniformly bounded on the members of a if the last inclusion holds
for each AeA.

b) A net {fx’ AeA} < F(X,Y) is said to be finally U*-uniformly bounded on
the members of a, if for each VelU, there exists a Aoel\ and a finite FcY, such
that fA(A)cV(F) for each A>)\° and for each Aea.

If the inclusion holds for every AeA, we say that (fx’ A€A} is
U*-uniformly bounded on the members of a.

If A={X} we wuse the notation "U-uniformly bounded" instead of
"U-uniformly bounded on the members of a={X}".

PROPOSITION 3.2. Let X be a space and let a be a covering of X and (Y,U)
a uniform space. Let (f)‘, A€A} ¢ Ba(X,Y) (resp. (fx' A€A} c 8&(X,Y)) be a net
converging to f with respect to the topology 9w v~ Then (fA, A€A} is a
a

a
finally U-uniformly (resp. U*-uniformly) bounded net on the members of a.

PROOF. First we suppose that (fA. A€A} c BQ(X,Y) and we prove that (fx'
A€A} is finally U-uniformly bounded on the members of a. Let VelU and Aea. Then

[A,V]I(f) is a 7w-1 neighborhood of f, so it is also a :‘Tw v~} neighborhood of
a a a
f. So, there exists a AOEA, such that fx € [A,VI(f), for each A)Ao,which means
that fA(A) c V(£f(A)) for each 7\>A°. But since the net (f;\’ AeA} converges to f
with respect to the topology 7w v it also converges to f with respect to
a a
7w . So by Proposition 2.2, fe?a(X,Y). Thus, there exists a meN and F finite,
a
FcY, such that f(A)cV™(F). So by (1) we have that fA(A)chl(F) for each 7\>7\0.

This means that (fx' A€A} is finally U-bounded on the members of a.

Now we suppose that (fx’ A€A} c BZ(X,Y) and we prove that (fx’ A€A} is
finally U*-uniformly bounded on the members of a. Let VelU and Aea. We choose a
Uel, such that UoUcV. Then fe[A,U](f) and following the above process we prove
that fA(A) c (UoU)(F) < V(F) for each A>A .

PROPOSITION 3.3. Let X be a set and let a covering of X and let (Y,U) be
a uniform space. If {fn, neN} is a sequence contained in ﬂa(X,Y), (resp. in

ﬂa(X,Y)) and converging to f with respect to the topology ?Iw v~ then
a " a

(fn, nelN} is U (resp. U*)-uniformly bounded on the members of a.
PROOF. Let {fn, nelN} c fBa(X,Y). We prove that (fn, neN} is U-uniformly

bounded on the members of a. Let an arbitrary VelU and let an arbitrary Aea. By
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the previous proposition there exists a noEN, a finite subset FcY and a meN,

such that f (A)cV"(F) for each neN, nzno. But the functions fn, lsnsno, are
n

U-bounded on the members of a, so for the given Vel, there exists mneIN and

m
finite subsets FncY, 1 = n s n, such that fn(A) c V"(Fn), 1 = n =< n,

no
Setting m* = max(ml,m ,..‘mn,m) and F* = F v (U Fn) we observe that

2
Vv Fe) > f (A), for each neN, which means thatn_l(fn, neN} is U-uniformly
bounded on the members of a.

For the other case we follow the same process as above, choosing Uel,
UoUcV.

COROLLARY 3.4. Let X be a set and let a be a covering of X and (Y,U) a
uniform space. Let {fA, A€eA} ¢ Ba(X,Y) (resp. (f)‘. A€A} c ﬁa(X,Y)) be a net

converging to f with respect to the topology ﬂu . Then (fx' AeA} is finally U
a
(resp. U*)-uniformly bounded net on the members of a.

PROOF. It is an immediate consequence of Proposition 3.2 if we observe
that w v w;l < u,.

COROLLARY 3.5. Let X be a set and (Y,U) be a uniform space. Let (f)‘. A€A}
c Ba(X,Y), (resp. (fx’ A€A} c £;(X,Y)) be a net converging to f with respect
to the topology 7u. Then (fx’ AeA) is finally U-uniformly (resp. U*-uniformly
bounded.

PROOF. It is an immediate consequence of the above corollary if we set
a={X}.

COROLLARY 3.6. Let X be a set and a be a covering of X and let (Y,U) be a
uniform space. If (fn, neN} is a sequence contained in BG(X,Y) (resp. in

ﬁa(X,Y)) and converging to f with respect to the topology ?u , then (fn,nelN)
a
is U (resp. U*)-uniformly bounded on the members or a.

COROLLARY 3.7. Let X be a set and (Y,U) be a uniform space. If (fn, neN}
is a sequence contained in B(X,Y), (resp. in B*(X,Y)) and converging to f
with respect to the topology ‘.‘Tu then {fn, neN} is U (resp. U*)-uniformly
bounded.

Let us complete the above paragraph by giving a classical theorem of real
analysis, as a corollary of the above results.

COROLLARY 3.8. If the sequence (fn, neN} of real - valued functions
defined and bounded on X converges uniformly to f, then f is also bounded and

the sequence (fn, neN} is uniformly bounded on X.
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