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ABSTRACT. A singular non-self-adjoint boundary value problem is considered. This problem

has a discontinuous coefficient with a spectral parameter in the boundary condition. Some
solutions of the eigenvalue equation are given. The discrete spectrum is studied and the

resolvent is obtained. Formulation of the adjoint problem is deduced and hence the continuous

spectrum of the considered problem is given. Furthermore, the spectrum of the adjoint problem

is investigated.
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INTRODUCTION.
Consider the boundary value problem corresponding to the modified form of the Sturm-

Liouville equation
q.J" + q(x)q.J Ap(x)q.J,z (5 [0, cxz) (1.1)

and the boundary condition
m

q.f(O)- A _, a,,d(a,,) + A C(x)q.J(x)dx 0, (1.:2)
n=l 0

where A is a complex parameter and a,,a, are real constants. We shall assume that the

potential function q(z) and the function G(z) are a complex valued, integrable on [0,cx) and the

condition

[z q(z) dz < (1.3)
0

=[b, O<z<_c
p(x)

(1, c<x<,

is satisfied throughout this paper.

The function p(z) is defined by

where b, c are a positive constants and b # 1.

It is worth noting that the study of boundary value problems containing a spectral parameter in

the boundary conditions have many interesting applications, especially in mathematical physics

(e.g. [11, pp.146-152).
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Many self-adjoint boundary value problems of this type, for a differential equation of the second

order for which p(.r)_= and including a spectral parameter in the boundary condition, were

discussed in ([3], [4], [6], [7]). In [5] the cas(, of two-point boundary value problems with spectral
parameter in the boundary condition was studied. Moreover, a singular non-self-adjoint

boundary value problem with a discontinuous coefficient and including a spectral paraxneter in

the boundary condition was investigated in [10].
Our aim in this work is to study a non-self-adjoint boundary value problem, with a

discontinuous coefficient, that contains a spectral parameter in the boundary condition.

We give some solutions of equation (1.1) and obtain the Greens function or the resolvent of

the problem (1.1)-(1.2). Upon using Lagrange’s formula and the resolvent of the problem (1.1)-
(1.2) we deduce the adjoint problem that associated with that one. Moreover the continuous

spectrum of the considered problem is given and then the spectrum of adjoint problem is

classified.

SOLUTIONS FOR THE EQUATION (1.1).
We shall mainly use the basic results that have been obtained in ([8], [9]). Let us consider

first the initial conditions:

where

u(c,x) 1, u’(c,x) 0
(1.4)c(,) 0, c’(,) l,

x A/ a+ir with 0 _< ar9 t < 7r.

Upon using the results in [9], it can be shown that the solutions for x e [O,c], and which satisfy
the initial conditions (1.4) can be expressed in the form,

and

u(x,)=cos x(x-c)b+ A(x,t) cos x(t-c)b dt,

qf(x,x)
sin x(x- c)b f x sin x(t- c)b

xb + A(x,t) tb dr,

where the kernels A(x,t),A(x,t)satisfies both the differential equations

and the conditions

OA OA OA OA
Ox at q(x) A, (x,t), Ox at q(x) Az (x,t)

c t-c

A (x,x) 1/2 Ix q(t) dr; a (x,c) O.
c

Moreover, u(x,t) and (x,t) are entire functions of x of any fixed b and they have the following
asymptotics behavior as

u(x,x) cos x(x c) b + 0 exp lm xb (x c)),

qf (x,a)
sin x(x c)b 1

xb + 0 - exp lm xb (x c))

uniformly with respect to x on [0, c].
Now, let us denote by

a(x) q(t) dt; oh(x) a(t) dr.
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For :r E [c, oo) one can show uiug IS] that for a1.v iu tlc upper half plane the equation (1.1) has

a solution of the form

f(x,u) .rp (x.r) + l,(x,t) exp (ht) d. {1.5)
x

where p(x, t) satisfies the inequality

p(x,t) < exp (,(x)) (1.6)

In addition, if q(x) is differentiable, then p(x,t)is twice differentiable and satisfies both the

equation

and the condition

O2P OP- q(x)p(x,t)Ox Ot

q(x).dx

This solution is an analytic function of a, r > 0 and continuous of , r

_
0. From the continuity

of f(x,x)on [0,c] we find

x
f(z,x) f(c,x)[cos x (z-c)b+ A,(z,t) cos x (t-c) b at]

C

+ f’(c,)
sin b(X- c)b + /xc A (x, t)

sin
(1.7)

Furthermore, in [81 it was shown that the equation (1.1) has a solution f,(x,x),x
_

[c, cx) such

that in a domain > 0, [[ > > 0 the inequality

f (z,x) < M exp(z’r)

holds for a sufficiently large M. This solution can be written in the form

fl(X, )"-- Xp(- ixx) (1
uniformly with respect to x

Thus, the solutions :(,);I(,) on [0,) can be written asymptotically as follows"

f(,)
exp(ixx)(l+o(l)),

O<x<c

c < x < (:x

(1.8)

and

fl(x, x)
(_/.) +0

0<x<c

c < x < cx.

2. THE DISCRETE SPECTRUM AND THE RESOLVENT.
In this respect we study the discrete spectrum and obtain the resolvent of the problem (1.1)-

(1.2).
The next lemmas 1, 2 follows directly from the work [8].

LEMMA 1. The boundary value problem (1.1)-(1.2) does not have eigenvalues on the
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positive semi-axis \ > 0.

LEMMA 2. The necessary and sufficient conditions that , # 0 be an eigenvalue of (1.1)-
(1.2) are that

77/

A a;r > 0;() f’ (0,’)- o,.f(a,,g)+ ga G(x)f(t,’)dt 0, (2.1)
n= 0

It is clear that () is an analytic flmction in the upper half-plane and this proves the following

lemma:

LEMMA 3. The boundary value problem (1.1)-(1.2) has no more than a countable complex

set of eigenvalues. The limit points can lie only on the real axis.

Next, the asymptotics formula for investigating the discrete spectrum is obtained.

Taking

o() b exp (ic sin bc + cos bc [cos b (a- c)

n=r+l

Thus, using (1.9), (2.1) we have

Then, for large values of and r 0 the functions () and o() are equivalent outside a circle

of fixed radius 0 < < 1 with a center at the zeros of o(),i.e., the circle
0

Since, () d 0(x) are anMytic functions of x, by Rouche’s theorem they have the se

number of finite zeros.
o be the zeros of () d 0() respectively. Thus from (2.3) it is clear thatLet x,, ,

for lxl+mwith r>0.

Accordingly, the study of the distribution of eigenvMues of the problem (1.1)-(1.2) is equivMent

to the study of the zeros of the function 0() in the upper hMf ple.
Evidently, the function o(X) ds not tend to zero for sufficiently lge real values of x.

Hence:
TEOM 1. The set of eigenvalues of the problem (1.1)-(1.2) are bounded in a closed

domMn in the upper half plane.

THEOM 2. Let q(x), G(x) satisfy the conditions exp (ex) q(,) (0,) d exp(ex)
(.) e z,(0, ), > 0.

Then the discrete spectrum of (1.1)-(1.2) consists of finite number of complex eigenvMues d a

possible finite number of reM spectral singularities on the positive semi-is 0.

PROOF. From Lemma 3 it is sufficient to show that the set of complex zeros of (x), r > 0

h no limit points on [0, ). Since for , r 0 d fi [0, m) equation (1.1) h a solution

of the form (1.5)-(1.7). Thus in view of (1.6) and the sumptions of the theorem we have

(,,) < M ezp(- 12[z + 1)

where M is a positive constant. Suppose that

A,(x, t) l, A2(x, t) < M (2.4)
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and the kernels A(x,t), A2(x,t) have continuous partial derivatives.

Also, the kernel p(x, t) has continuous partial derivatives and

/’’[Ip’ (,t) + z,’, (.v,t) p (12t) at < . (2.5)
x

Taking into account (2.3), (2.4) and (2.5) show the integral in (2.1) converges for r > /2. By the

uniqueness of analytic continuation, the function f(x,) is not only a solution of (1.1) for r _> 0

but also for r > -/2. Thus, (x)is a holomorphic function in a domain S {x:r > /2}.
Therefore, the set of complex zeros of T(n) has no limit points on the real axis. Hence, this

set is finite in a bounded domain. Moreover, it is possible for ,(x) to have a finite number of real

zeros as well as a singular spectrum on the positive semi-axis A > 0 and hence the theorem is

proved.

In the sequel, we obtain the resolvent formula of (1.1)-(1.2). If 2i f’(o, x) # 0, let us define

Ro(x,t,a)

f(O,x)f(x,x)f(t,x)
2i x f’ (O,x) 2i x f(x,x) fl(t,x), < x

f(O,x)f(z,x)f(t,x)
2i t f’(O,x) 2i f,(x,x) f(t,x), > x.

(2.6)

THEOREM 3. If A 2 is not an eigenvalue of (1.1)-(1.2) then the Green’s function for

J" + q(x) A p(z) q.J pf, x

_
[0,cx)

is R(z,t,). That is, if f E (0,,p(z))then

(2.7)

d(z,x) R(x,t,x) p(t) f(t) dr,

where 0

x2f(x,x) , a,Ro(an, t,x)+ G(x) Ro(z,t,x)l dz (2.8)R(x,t,x) Ro(x,t,x) + () n 0

PROOF. It is cle from Threm that all numbers A ,() 0 d r > 0 e in the
ot t o th obm (.1)-(.). Si, is mea ot to be ivo (.)-
(1.2), we have the resolvent R(x, t, exists. Consequently, there exists a solution of equation

(2.7) in 2(O,;p(x)). Suppose that

is a solution of equation (2.7) that satisfiesOthe condition ’(0)= O. hen, we find Ro(,,)is of
the form (2.6); therefore, the general solution of the equation (2.7) that belongs to (0,;())
tes the form

(x,x) o(X,X) + cy(z,), (2.9)

where C is bitry constt to be found. Since the function (x,x) satisfies condition (1.2)
W hv

=1 0

Substituting in (2.9) we deduce that

0
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where/?(.r,t.) is defiucd by the form,tla (2.8).
Furthermore, for

_
x we have

f(x,^-) [.fl,(0,-) .f(t,^’)-.f’(O.)f,(t,-)]R(x,t;^-) =2t - f’(0,-)

^f(x,g)
o,/(a,,,g) [f’,(0, g) f(t,^’)- fl(t,) f’(0,)]

+gf(x,) ff(0,’)f(t,g) f’:’G(x)f(x,g)dx2, (^).f’(O,n)
0

0

and for > x we have

R(z, t; , f(t, tc)
2in f’ (0,) [f (0,) f (x,n)-f’ (0,) f, (x,)] + :f(x,) f (t,)

2, () f’ (0,)

(2.10)

a,, f (a,,) f (0,^-)- a, f, (a,,,t) (0,)
n n=l

f (0,) f(x,)f(t,g)
JlOnG(x) f (,,)dx

2i (to) f’(O,t)
0

2i (- f(t,) G(x) f (x,n) dz + f, (t,) G(z) f (x,) dx (2.11)
0

3. THE ADJOINT PROBLEM OF (1.1)-(1.2) AND ITS SPECTRUM.
Now, we consider the resolvent R(x,t,n) of the problem (1.1)-(1.2) to obtain the adjoint

problem.
Let us denote by L the adjoint operator of the Lx operator which is generated by (1.1)-

(..).
We denote by D(L’) those functions % denoted on [0,oo) and satisfying:

(i) 5 is in 2(O,,p(x));
(ii) ;t exists and is absolutely continuous on every finite subintervals

[O,a,),(a,,a2),....(a,,- 1,a,) and (a,,cx);
(iii) ;’ (a,,+O)-’(a,-O)=a,,,(O);
(iv) ;’(0) O;
(v) is twice differentiable s x a,,n 1,m and -;"+ (x) ; /. (O, oo;p(z)).
THEOREM 4. Assume that D(LI) satisfies the conditions (i)-(v). Then the adjoint

p,obm o (.)-(.) b witt i th om

-" +-q(x) 5-, (x)- a,, ,5(x-a,,,) 5(0)=p5, (3.1)
n-1

’ (0) 0. (3.2)

PROOF. If qJ D(Lx) and 5 6_ D(L’x) then we have (LxRJ,) fo,,(_ ado + q(x)Od)
o

dx q.if, ) + (q , ) =_ [(- ’; + ’)1- o; ’dx + qq.J dx

0 0
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’ (0) (O) J (O) (O) + " + q O ,tx

0

/2( " + q dx- q.J (O) (O) + x2;(0)[
0 n

+ g (o) . (_ ,,)o

_
o (o)m’(o)

n=l 0

(-;"+ ; -, ; (o/ a(/- (--/ d-J (o/’ (o.
0 n=l

Next, we show that ; t(O) O. Since

(z) 0 R(t,x,-g p(t) f(t) dr, f(t)
_

2..: (0,,p(z))

we have

’(0) /2 R (0,x,K) p(t) f(t) dt.

In fact, R(x,t,x) as < x has the form (2.010). By differentiation with respect to we obtain

f (zt, K [f(0,K ft(0,K )- ft(0,K f(0,K )]R (0,,)=
2i (0,)

rnx f (z,-g)
2i qo (K) f’ (0,- n 1

o, f(a,,- [f(0,- f’(0,K )- f(0,K f’(0, )]

f(x,-g f(O,-g)
2i o (-

[J G(z) f(x,-g dx

0

f(x,-g f(O,K
2i (k)

t]2 G(x) f(x,-g dx 0 thus R(O,x,- 0

0

Similarly, for > z we can show that R (0,x,)= 0 by using (2.11).
rn

(La,5) o(_ ,+ q x2 ;(0)[C(x)- _, o,, 6(x- a,.,)) q.J dx
0 n=l

rn
=(%-"+- (0) [(1- ] ,. ,(=-,,.11 (’U,L).

n--1

Hence, the adjoint problem takes the form

m-"+-q () - [()- ,. (- a.)] (o)= , z,
’(0) 0,

he z tifie the popeti (i)-().
TItEOPM 5. The positive semi-axis A > 0 constitutes a continuous spectrum of (1.1)-(1.2)

unless both qa(x) and qa(- ) vanish simultaneously. This theorem can be proved by using the

adjoint problem (3.1)-(3.2) and the work [8].
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Ulon ,Ling Lcmna 2 and Theorem 5 the" next theorem follows directly fiom [2]"
THEOREM 6. The pcctrm of (3.1)-(3.2) consists of:

(i) cigcnvalucs X xvhcn,vcr 4(u) O, r > 0 and A , on the positive senti-axis A O,

(ii) continuous spectrm on the positive senti-axis k O unless both () and (-)
vanish simultaneously.

We claim that all numbers whenever () 0 and , from the upper half plane

b,long to the resolvent set of the problem (3.1)-(3.2) and its resolvent is R (t,x,g).
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