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1. INTRODUCTION

Sets of very different geometric characteristics may have same Hausdoiff dimension. In
[6]. C. A. Rogers introduced the notion of Hausdorfl dimension print to distinguish such scts.
It is not casy to obtain the Hausdorff dimension piint of a given set, even though it may be
Lighly regular. In particular, we recognized that it is extremely difficult to find the Hausdorff
dimension print of a nowhere differcntiable continuous function. We introduce the coordinate
d-dimension print, evolved from the d-dimension to deal with above difficulties. The coordinate
d-dimension print of a given set inforins us of its geometric characteristics, its d-dimension, and
the d-dimension of its projection to z-axis.

We investigate coordinate d-dimension prints for the graphs of nowhere differentiable con-
tinuous functions and for regular sets.

At the end, we shows how the coordinate d-dimension print can be used for calculating

the d-dimension of a set related to the aforementioned graph.

2. PRELIMINARIES
We restrict our attention to subsets of R? for simplicity.

We mean a (b, a) coordinate rectangle by the set of the form [mb, (m + 1)b] x [na, (1 + 1)a]
whete m and n are integers.

For s,t > 0, we define a pre-measure for a set E C R? by

CDO(E) = lim inf (Np(a,b)a’' : 0 < b< a < 6}

whete Ng(a, b) is the number of (b, a) coordinate rectangles that interest E.
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We obtain an outer measure using Mcthod I by Munroe [4]

cd*(E) = inf{)_ CD"O(E,): E = U, E,}

n=1

for a set E C R2.

Now, we 1ccall lower box dimension ([2]) (lower capacity ([5])), dimyz(E)(= Cap (E)) =
liminf,—o 'ﬂ%‘l’—“), and modified lower box dimension ([2]) (d-dimension ([3})), dimnyy (E)(=
d—dim(E)) = inf{sup, dimp(E,) : E = U2, En}, where N(E,a) = Ng(a,a) for E C R? and
N(E, a) is the number of intervals of the form [ma, (m + 1)a) that interest E if E C R

It is not difficult to show that

sup{s > 0: CD"Y(E) > 0} = Cap(E)
and
sup{s > 0: cd*V(E) > 0} = d — dim(E)

for E C R? (cf. [2], [3]). (Note that the smallest number of squares of side a that cover
E < infocp<a Ne(a,b) < Ng(a,a).) Note that CD® and ¢d®® are only the variations of
D*-premeasure and d°-measure in [3] respectively.

Hence we just write CD(*9(E) = D*(E) and
cd"(E) = d°(E) for E C R%.
For E C R!, similarly we define

D*(E) = lim info N(E,a)a’

and

d'(E) = inf{i D*(E.): E = UE,}.

n=1

Then we have
sup{s > 0: D*(E) > 0} = Cap(E)

and

sup{s > 0:d°(E) > 0} =d — dim(E).
We define the coordinate d-dimension print of E C R? by
cd - Print (E) = {(s,t) : cd®Y(E) > 0}.

Plainly the coordinate d-dimension print is monotonic; cd-Print (E;) C cd- Print (E;) for
E), C E,. Further it is additive, in the sense that

cd - Print (U2, En) = USZ,cd - Print(E,).

n=
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3. PROPERTIES OF cd-PRINTS

By the definition, we have the following straightforward propositions.

PROPOSITION 1. H-Print (E) C ¢d-Print (E) for E ¢ R (Here, H-Print means
Hausdoff dimension print [6])

PROOF. Comparing the families of 1ectangles that cover E in the definitions, we have
H(E) < edY(E) for E C R

If a point (s,1) is in the coordinate d-dimension print of E, then {(s',#) : ' +t' < s+t,t' <
t} 1s contained in the coordinate d-dimension print of E

PROPOSITION 2. If cd“Y(E) > 0, then cd™")(E) = co for &' 4t/ < s+t and t' < 1.

PROOF. Suppose cd(E) > 0. Then for every sequence {E,} of subscts that cover
E. Z:o:, CDY(E,) > 0. So there exists E,, such that CD("')(E,,O) > a > 0. Thus
mf{/\',:;no(n.b)rr’b' 0<b<a<ép} > afor some &.

Fors'+t' <s+t,t/ <t,andb<a<é<é

Ne, (a,b)a”b" = Ng, (a,b)a*b'a® =*0" "

> N,;"D(a,b)a"bla"_’a"_'
> Ng, (a, b)a®b' 6+~ (=40

> a8 )= (s+1)

Thercfore,
CD("'"')(E,.O) =00 fors' 4+t <s+tandt <t
Hence cd(""‘)(E) = oo.
REMARK 3. Let C) = { %2, au4™" : a € {0,3}}.
By Example 2 in [6] and Proposition 1

Cd(%’%)(c_} X C_}) > 0.

It follows from Proposition 2 that cd(o'é)(C% X C%) = oo.
However we note that d*(C%) = 1. (Compare this with Theorem 8.)
PROPOSITION 4. cd*"*)(E) > cd*(E) for s' +t' <s+tand t' <t
PROOF. It follows from similar argument with the proof of Proposition 2.
COROLLARY 5. If cd(®(E) < co, then cd®)( E) = 0 for any s > 0, and cd>*)(E) = 0

for t' > t.
PROQOF. It follows immediately from Proposition 2.

To deal with the geometric characteristics of cd-Print, we need the following two simple
but interesting lemmas.

LEMMA 6. If d — dim(A) = a for A C R!, then ¢d®?) (A x R) = 0 for § > a. In
particular, if d — dim (Proj, E) = a for E C R?, then cd®P(E) = 0 for # > a. (Here Proj, E

denotes the projection of E to z-axis.)
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PROOF. Since d — dim(A4) = «, (/”’(A) = 0for g > B > «. By the definition of
d-mcasure, there exists a sequence {A% )22 such that U =Aand )7, DA (A%) < 1.

Thus, for any integer m and n and 3 > 3,

C'D("‘m(A(,’, x [mym+1]) = }in(l,iuf{N,\?l x[om,m 1] 0)a"t’ 0 <b<a< 8}
1
< Jim( 2+ 2)inf{N (A, )07 10 < b < 6)

<luu( +2) luu mf N(A b)bP

= lun( +2)D?(A%) = 0.

Therefore

CAOPAXR) it 30 3" CDOM (A x o+ 1) 5 A = U2 )

m=-—oon=]

Z ZCD((”’) x [m,m+1]) =0.

m=-—oo n=1

LEMMA 7. If d — dim (Proj, E) = o for E C R?, then cd®"(E) = oo for v < a.
PROOF. Since d” (Proj, E) = oo for v < a, for any cover {E, } of E,

Z CD(OJ)(E")

n=1
> DY(Proj.E,)
n=1

> d"(Proj,E) =

As d — dim(E) = « doesn’t always mean d*(E) > 0, it is natural to consider cl[ cd-Print
E)], the closure of cd-Print (E) in the space {(s,t) : s > 0,¢t > 0}.

There is very interesting connection between d-dimension of the projection of a set to
a-axis and its cd-Print.

THEOREM 8. For E C R?, d—dim (Proj. E) = «iff ¢l[ cd - Print (E)|Ny—azis = [0, a].

PROOF. If d — dim (Proj.E) = «, then ¢l [cd- Print (E)JN y — azis = [0,a] by Lemma
6 and 7.

Suppose that ¢l [cd - Print (E)] Ny — azis = [0,a]. Then ¢d®V(E) = oo for v < a, and
cd®P)(E) = 0 for > a by Proposition 4 and Corollary 5.

It follows from Lemma 6 that d — dim (Proj,E) > a. And d — dim (Proj,E)
< « follows from Lemma 7.

Next theorem tells us a geometrical connection between d-dimension and cd-Print.
THEOREM 9. For E C R?, d — dim(E) = 8 iff cl[cd - Print (E)] Nz — azis = [0, B].
PROOF. It follows from sup{s > 0 : cd*9(E) > 0} = d — dim(E).
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COROLLARY 10. If d — dim(Proj,E) = a and d — dim(E) = g for E C R?, then
l Print (E) C {(s.t) s s4t < 3, t < a}. In patticular, ed-Print (E) C {(s,¢) : s+1 < 2,t < 1}

foo EC R
PROOF. 1t is immediate from Proposition 4, Theorems 8 and 9.

4. CALCULATION OF cd-PRINTS

Now, we calculate the cd-Piint of some specific subsets of R2. Let [J] denote the length

of mterval J.

THEOREM 11. Let ¢ : [0,1] = R be a function such that C,[J[* < sup, e, le(a) —
2y)] < CqlJ|® for any interval J C [0,1], where some constants C,Cz > 0 and 0 < o« < L.
Let A(C [0, 1])‘be a compact set such that Cap(AN(a~§,a+§)) > Cap(A) = f for auy a € A
and 6 > 0, with 0 < 3 < 1. Then for the graph of ¢ on A, Ga

clled - Print(Ga)] = {(s, 1) s+t <148 —a,t < B —as}.

PROOF. Since G4 is a closed subsct of R?, U2, G,, = G4 for each sequence {G,} such
that USZ, G, = Ga, where G, is the closure of G,, in R?. Further, by Baire Category theoren,
there exists integer 1y such that G_,,O contains G4 N B, () for some z € G,, C G4 and some
> 0.

By continuity of ¢, we can choose § > 0 such that {(b,(¢(d)) : b € (a—6,a+6),(a,p(a)) =
&} C Be(z).

Therefore we have {(b,¢(b)): b€ (a—é,a+ 8) NA,(a,¢(a)) =z} C GaN B (z). And, we
note that Cap((a —é,a + §)N A) = B and d — dim(A) = 8 ([7]).

Hence we only nced to show that

(1)CDED(Ga)y=ocofor s+t <1+ f—aandt < f—as.

(2) CDUN(G ) =0fors+t<1+B—aort>p—as.

(1): Suppose that s +t <1+ 8 — a and t < —as + . Then we can find € > 0 satisfying
s+t<l+f-—a—-candt < —as+f —e. Since Cap(A) = B, there is by such that for all
positive b < by,

N(A,b) > b= P+e,
Now, consider § < by and b,a such that 0 < b < a <6é.
In case that C;b* > a, we have
Ng,(a,b)a’b' > (Cb™/a)b=P+ea’b!
> Cl ba—ﬂ+e+ta!—l .
Ifo—PB+¢e—t<0,then
NGA (a, b)a"bt > Claa—ﬂ+e—l+s+t.

Otherwise,

Ng,(a,b)a’b! > Cy[(a/Cy)s]oPtettgs!
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a

1):£_ﬂﬂ-_ﬂif_+i'_t'
a

Iu case that Cd™ < a, we have
Ng,(a,b)a"b' > b= Prea®d'.
Since t < f — ¢,
N, (a,0)a'h' 2 a'[(G)*]7PFe
B
1 —ftett —Pietaste
= ('C—]) e e

Thus
gin(l)inf{NgA(a,b)a’b‘ :0<b<a<b}=o00.

(2) : Suppose that s+t > 1+ 3 —a or t > —as + B. Then we can find € > 0 such that
s+t>1+f-a+eort>—as+f+e. Since Cap(A) = f, for such € > 0, there exist infinitely

many n such that N(4,1) < (1)7#=¢. Hence,
i a 1 v 1 als l t
Noa(Cal)", D))
1 1 1
< 9(=) B¢ Zyos 2t
< 2A2) PGPS
s 1 —p—&tas
- 202(;) B—etast+t
(Here, we may assume C; > 1). And,
1 11,1,
Nm(p;)(;) (”)
1 1 1 1
< (2 —f—e Y- N s+t
S (PG ) +2AG)
1 1
< Sya—B—e—14s+t 2 y—B—ets+t
<Go(5) +2(7)

Hence
}in})inf{NgA(a,b)a"b' :0<b<a<é}=0.

COROLLARY 12. Let ¢ : [0,1] — R! be a function satisfying Cy|J]|* < sup, ¢ l¢(z)—
@(y)| < C|J|* for any interval J C [0, 1], where some 0 < a < 1 and some constants C; and
C, > 0. Let A(C [0,1]) be a symmetric Cantor set with a sequence of contracting ratios
{a.}([7])- Then

cllcd-Print({(z,¢(z) : z € A})]

. . ,—nlog?2
= . < —
{(s,t) : s+t <1+ liminf Tog o
. . .—nlog2
and ¢ < max{liminf oga, as,0}}.
PROOF. 1t is easy to show
—nlog2
Cap(AN(a—é,a+8)):=liminf L Cap(A)

logan



COORDINATE d-DIMENSION PRINTS 103

for any @ € A, 8 > 0, and A is a compact set ([7]). It follows immediately from Theorem 11

and the fact above.
REMARK 13. There are many examples of Theorem 11, Kiesswetter's curve([1]) is one

of them and the closure of its ed-Print is {(s,8): s 4+ < % and t <1 — %c}
Now, we introduce a technique to gain the closute of ed-Print of some particular sets.
PROPOSITION 14. Let E C R? and d — dim (Proj, E) = «, d — dim(E) = a + 4 and
(" NE) = cofor s+t < o+ andt < a. Then ¢l [cd-Print (E)] = {(s,t) : s+t S.u+/3,f < al.
PROOF. If follows from Proposition 4, Theorem 8 and 9.
COROLLARY 15. Let 4, B be compact subsets of R! with d — dim(A x B) =« + 4,

satisfying

“Cap(AN(a—éb,a+8))> Cap(A) = o for any a € A and any 6§ > 0
and

Cap(BN(b—6,b+6)) > Cap(B) = f for any b € B and any 6§ > 0.
Then

clled-Print(A x B)) = {(s,t): s+t < a+f and t < a}.

PROOF. Recalling the argument in the proof of Theorem 11, we ouly need to show
CDU(A x B) = oo to prove cdOV(AXxB)=cofors+t<a+ B and t < a.

Suppose that s +t < o + f and t < a. Then there is € > 0 such that s + ¢ < o + A — 2
and ¢ < o — €. Since Cap(A4) = o and Cap(B) = f3, there exists by such that for all positive
b < by, N(A,b) > bt¢ and there is aq such that for all positive a < ag, N(B,a) > a=fte,
For 0 < b < a < min{ag, by},

NAXB((I, Il)(l"b' > I)'"+!a—ﬂ+caab(

— ()—a+5+ta—ﬂ+e+s

Since —a +e+1t <0,
Naxp(a,b)a’ht > q=@B+2etate

Since —a—f+2+s+t <0,

61i_l}’(l) inf{Nxp(a,b)a’b’: 0 < b < a<é<min{ag,bp}} = oo.
Noting d — dim (Proj,A x B) = d — dim(A4) = «a (|7]) and d — dim(A x B) = a + 8, we have
our conclusion from Proposition 14.
EXAMPLES 16. Let A and B be symetric Cantor sets in R with sequences of contract-
ing ratios {an} and {b,} respectively. Let liminf, %‘;Eﬁl =a, and limp oo %8“;53 = B.
Then d — dim(A x B) = a + f = d — dun(B x A) ([7]).
Clearly A and B satisfy the assumptions of Corollary 15.

Hence

clled -Print(A x B)] = {(s,t): s+t <a+ B and t < a}.

Also
clled - Print(B x A)] = {(s,t) : s+t < a+ B and t < B}.
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EXAMPLE 17. Using Proposition 14 o1 Corollaty 15, we casily see the following fact.

(a) If Eis a smooth ciuve and Proj, E is not a singleton, then ¢l [cd-Piint (E)] = {(s,t):
s+ 1< 1),

(b) If E is any set in R? with non-empty intetior, then

clled-Print(E)] = {(s,#) : s ++ < 2,t < 1}

(¢) Let A be a symiunetiic Cantor set with a sequence of contiacting ratios {a,} and

liminf,, .o :IM—Z = «. Then
Oog an

clled - Print(A x R)) = {(s,8) : s+t <1+ a,t < a}.
aud
clled -Print(R x A)] = {(s,#) : s+t <1+ a,t <1}

EXAMPLE 18. Let Ey denote the rotation of E with the angle 8 with respect to origin
and let Cl. be as in Remark 3. Then for almost all § € (0, 7),

clfed - Print(Cy x Cy)e] = {(s,1) : s +1 < 1}

since Hausdoff dimension of Proj,[(C 1 X C %)9] is the Hausdorff dimension of C 1 X C 1 1,
almost all 8 € (0,7) ([2] Theorem 6.1).

We note that

1
clled - Print(Cy x Cy)] = {(sy,t):s+t<landt< Z],
and

. ) log 3
clled-Print(Cy x Cy)z] ={(s,t):s+t<landt< fogd?”

Now, we introduce an application of cd-Print.
THEOREM 19. Let ¢ : [0.1] — R be a function such that

CilJ]* < sup, le(z) — w(y)] < ColJ|*
z,y

for any interval J C [0, 1], where some constants C;,C; > 0and 0 < a < 1. Then d—dim({z €
[0,1] : p(z) is not an algebraic number }) = 1.

PROOF. Let K = {z € [0,1] : ¢(z) & A}, where A is the set of algebraic numbers.
Suppose that d — dim(/') < 1. Then d — dim(') < § < 1 for some 3 > 0. Now,

{(z,y):y—p(z) € A} = {(z,y) : p(x) € A,y — p(z) € A}
U{(z,y): v & Ay —p(z) € A}

={(z,y):y€ A} U {(z,y) : z € K,y — p(z) € A}.

Since A is a countable set, we can: enumerate A = {a, }52,. Therefore
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{(xoy) 1y —plr) € A} = URZ {(r @(2) + ay) 10 € [0.1]).
By the additivity of ed-Print and Theorem 11,
clled - Print({(a,y):y — () € A})] = {(s. ) s+t <2 —a,t <1-as}.

But
clled - Print({(r,y): 0 € K,y — p(r) € A})] C{(s,8) 1 s+t <2 —a,t < 3}

and

clled - Prnt({(x,y) : y € A)]
C clled - Print(UZ  {(a,a,) : x € [0,1]})]
={(s,t): s+t <1},

A contradiction arises by the monotonicity of ¢d-Print.
REMARK 20. Let A C R be a compact set such that Cap(AN(a—e,a+¢e)) = Cap(A4) =
a for any a € A and any € > 0. Then d — dim({r € 4 : p(z) € A}) = a, where A is the set of

algebraic numbers.

REMARK 21. There might be several different way to get ¢l [cd-Print (R x R)] =
{(s,t)rs+t<2t<1)
For example, we could consider countable graphs of ¢, in Theorem 11 with « = %
Another method is to use countable sets of [0,1] x It,, where I\, is a symmetric Cantor
sct with a sequence of contracting ratios {a,x}5, satisfying
—klog2 |- l

lim - =
k—oo log a, k n

CONJECTURE 22. Let E C R? with d — dim(E) = @ > 1. We conjecture
clled -Print(Eg)] = {(s,t) : s+t < a,t < 1}

for almost all 8 € [0, 7).

REMARK 23. While the Hausdorff dimension print is invariant under linear transfor-
mations, our coordinate d-dimension print is not so. For example, a straight line parallel to
y-axis has a smaller coordinate d-dimension print than a line at 45° to y-axis. Nevertheless
our coordinate d-dimension print is particularly useful for the study of sets, such as the graphs
of functions or Cartesian products which naturally have special relationship to the coordinate
axes. (We thank our referee for pointing out the previous fact.) It would be interesting to

investigate how the coordinate d-dimension print changes according to linear transformations.
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