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ABSTRACT. This paper is concerned with the problem of allocating a fixed number of tnals
between A independent populations from the exponential family, in order to estimate a linear
combination of the means with squared error loss. Introducing independent conjugate priors. a

batch sequential procedure is proposed and compared with the optimal.
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1. INTRODUCTION.

Given K independent populations Pj, ..., Py indexed by unknown parameters ay,...,ax
respectively, it is wished to estimate a linear combination of their respective means based on
a fixed total number of observations M. The problem is one of allocating the M observations
between the A populations so as to minimize expected squared error loss. Several special cases
of this problem have been studied.

For estimating the difference in two Binomial means, Alvo and Cabilio. (1982) proposed an
allocation procedure shown to be asymptotically optimal. Rekab (1989) considered problem of
estimating the product of means of two normal populations. Robbins, Simon, and Starr (1967)
considered the problem of estimating the difference of the means of two normal populations
with unknown means and unknown variances. They proposed a sampling scheme that has been
applied in a variety of sequential estimation problems. Their work was restricted entirely to
the ad hoc design. Woodroofe and Hardwick (1990) considered the problem of estimating the
difference between the means of two normal populations with ethical costs. Using a quasi Bayesian
approach, they proposed a three stage procedure shown to be optimal to second order for squared
error loss.

In the present article we adopt a fully Bayesian approach to the problem of estimating a
linear combination of the means of K populations from the general exponential family. A lower
bound on the Bayes risk is derived and shown to be achieved asymptotically as M — oo by a

batch sequential procedure.
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2. THE BAYESIAN MODEL.
Let Py..... Py be I independent populations from the general exponential family indexed

by aj..... a e respeetively. That is. suppose that
dF, (i) = explari —v(a) M dA(r;) —oc <ua, <oc, «a; €0

for i =1..... L. Tt is assumed throughout that € is the natural parameter space of the family
and that € is open. It is well known that E, (X;) = ¥'(«;) and V,,,(X;) = ¢v"(a;). Let these in
turn be assigned independent conjugate priors, that is suppose that a; are independent random
variables which have distributions

exp{ripiai — riv(aq)}

dl(a;) = )

da;

where
o(ri,pi) = /exp{r,-p,-a,' - rip(a;)}da;.

Let M be the fixed total number of observations and M, ..., Mk be the random variables which
allocate observations to P,. .., Py with Ef;] M; = M. In estimating Zf;] c;¥'(a;) with squared
error loss, the terminal Bayes estimator is Zf‘:l cipti,M;, where p; ur, is the mean of the posterior

distribution ¥'(a;) based on M; observations. Due to independence of the priors, the terminal

(& UI WM;
rg = ( M T T’,) (21)

Bayes risk 5 is given by

where U; », = E{¢" ()| Xi1,. ., Xim, }-

3. LOWER BOUND ON THE BAYES RISK.
We begin this section by deriving a lower bound on the risk incurred by the optimal procedure.
LEMMA 3.1: Let rg be defined as in (2.1). Then

(E:_l(l ci | Vd’”(a )2

M+ Et_ Ti

PROOF: The terminal Bayes risk can be written as the sum of

K K
M+ r)TEQ e | V/Tim):
=1 =1

and

M+zr:) IE{Z E (Mi+73) | ¢ | /Ujm; — (M +r,)|c,|\/—) }

=1 =it (M; +ri)(M; + ;)

The lemma follows by the martingale properties of U; ar,.
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4. A BATCH SEQUENTIAL PROCEDURE.
In this section a batch sequential procedure is proposed and shown to be asymptotically
optimal. Let M, ; denote the number of observations sampled from population P, up to stage b.

Then at stage b the Bayes risk is minimized by

K K
b+ Z"-)_IE(Z [ | U:.M.,;)z
1=1 =1

and achieves its minimum when the following equality is satisfied for all ¢ and j

Ml,b + Ty _ | Cy l v t'.Mn,b

M+, | () | \/U M, i

. . . \ led\/Ui, M .
With a motivation to move -:,1—':%:—'- toward ol M“’ , We propose a batch sequential procedure as
el R 1] 1 M;

follows. First start with an initial sample of K observations, one observation from each population.
The remaining M — K observations will be allocated in B batches where each batch consists of
K — 1 observations. Suppose up to batch b we already observed M, ,..., Mk, then select one
additional observation from each population excluding population P, in next batch if

(M],b + 1‘,) e | vV Un,M.,b }
I G | v UJ.M,',A

The following lemmas are needed for the proof of the theorem.
LEMMA 4.1: Using the proposed batch sequential procedure, M, — oo almost surely as
b — oo for all i.

PROOF: The batch sequential procedure can be written as follows: Sample one observation

M, + r, > max{
J#1

from each population excluding P; if

(M + ) | < | VUJ,M,,o > (M, b+ "J) | el \/Ut,M.,»
e | VUmint e 1 /Upms — Le | Uim ot L) | /Uim,,

for all j # . Suppose that M, ; is bounded. Then M, ; are bounded for all j # i. Hence we have

a contradiction.
LEMMA 4.2: For b large enough, let

(Mj e +7,) i | /U Mix 1
| (5} ' \/UJ,M,,::

£ = sup{k <b: Mz +r; > m;a.x{
I#E

foralli=1,...,K. Then

ch I Ui.M.,,,(.) (1 1 ) < M;,b +r,
le, | \/U',M, NG My +r1,/ = My,

- | e | U.,M.'h(,) +( 1 )
T gl \/U',MM(,) M,k + 1,
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PROOF:
Mt,b +r, > Mz’k(‘) + 7 _ M.yl;(') +r ( _ 1 )
Myy+r, ~ Mo+, +1 Mo+, M iy +r,+1
Lol /U, ( 1 )
2 1- .
| ] | U]’M_y.l:(') MJJ“‘) +7,
On the other hand,
Mn,b +r, < Mx,k(J) +r.+1 _ M.,k(:) +r, 1
MJ,b+T] - M]_k(J) +7‘J M],k(:)+TJ M],k(,) +7‘J
! C | l M, ) 1
ICJ |\/UJM £0) Moty

THEOREM 4.1: Let rp be the risk incurred by the proposed batch sequential procedure.
Suppose there exists p > 1 such that E(¢"(a,))? < ocoforall:=1,...,K.

rp = E(Z‘_l(l a V P"(a )2 o(1/M)
M + Z;— Ty

as M — oo.

PROOF: The proof of the theorem will follow if we establish

K K
EQ el VUm ) —EQ le | Vi (@))? 50 as M —oo (41)
=1 =1

and

{Z Z (M +r) e | VOm = (M +15) | & | VTom)? } 4.2)

1=1 j=1+1 (M, +7)(M, +1,)

as M — oo. Let M,,..., Mg be the allocation variables for the batch sequential procedure. Since
M, — oo and U, p, are uniformly integrable, (4.1) is satisfied. Using Lemma (4.2),

M, | < | 1alvyla) ¥ (a,)

— a.s. as M — oo.

MJ l e, | v/¥'"(a,)

The proof will be established if ﬁ'—l%'-(cj )2U,,M, is uniformly integrable. Using Lemma (4.2),

M, +r,, c
M, +r, (1) Uj,m, <lellel m,?.x vV Ul,M.,kv Uym,,. + ;;'U M, -

The proof follows by Doob’s inequality for non negative submartingales.
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